Population densities and freshwater resources are not evenly distributed worldwide. This has forced farmers to use wastewater for the irrigation of food crops. This practice presents both positive and negative effects with respect to agricultural use, as well as in the context of environmental contamination and toxicology. Although wastewater is an important source of essential nutrients for plants, many environmental, sanitary, and health risks are also associated with the use of wastewater for crop irrigation due to the presence of toxic contaminants and microbes. This review highlights the harmful and beneficial impacts of wastewater irrigation on the physical, biological, and chemical properties of soil (pH, cations and anions, organic matter, microbial activity). We delineate the potentially toxic element (PTEs) build up in the soil and, as such, their transfer into plants and humans. The possible human health risks associated with the use of untreated wastewater for crop irrigation are also predicted and discussed. We compare the current condition of wastewater reuse in agriculture and the associated environmental and health issues between developing and developed countries. In addition, some integrated sustainable solutions and future perspectives are also proposed, keeping in view the regional and global context, as well as the grounded reality of wastewater use for crop production, sanitary and planning issues, remedial techniques, awareness among civil society, and the role of the government and the relevant stakeholders.
To evaluate the response of soybean to salt stress, the related changes in protein expression were investigated using the proteomic approach. Soybean plants were exposed to 0, 50, 100, and 200 mM NaCl. Especially at 200 mM, the length and fresh weight of the hypocotyl and root reduced under salt stress, while the proline content increased. Proteins from the hypocotyl and root treated with 100 mM NaCl were extracted and separated by two-dimensional polyacrylamide gel electrophoresis; 321 protein spots were detected. In response to salt stress, seven proteins were reproducibly found to be up- or down-regulated by two to sevenfold: late embryogenesis-abundant protein, beta-conglycinin, elicitor peptide three precursor, and basic/helix-loop-helix protein were up-regulated, while protease inhibitor, lectin, and stem 31-kDa glycoprotein precursor were down-regulated. These results indicate that salinity can change the expression level of some special proteins in the hypocotyl and root of soybean that may in turn play a role in the adaptation to saline conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.