A: Scintillation NaI(Tl) crystals are typically utilized at room temperature for detection of energetic photons in high energy and nuclear physics research, non-destructive analysis of materials testing, safeguards, verification of nuclear treaty, geological exploration and therapeutic imaging. The present work provides a new geometry for the source-to-detector combination. A special order cubic detector with rectangular cavity was used. The mathematical expressions of the path-lengths traveled by the incident photon as well as the geometrical solid angle were derived. The detector efficiency was determined for an axially positioned standard point-like gamma-ray source using the analytical efficiency transfer technique. Geant4 Monte Carlo simulation code was also used to predict the detector response under the calibration geometry. The analytical efficiency transfer and Geant4 simulation results were compared with those obtained experimentally and a good agreement between them was shown.
Scintillation crystals are usually used for detection of energetic photons at room temperature in high energy and nuclear physics research, non-destructive analysis of materials testing, safeguards, nuclear treaty verification, geological exploration, and medical imaging. Therefore, new designs and construction of radioactive beam facilities are coming on-line with these science brunches. A good number of researchers are investigating the efficiency of the γ-ray detectors to improve the models and techniques used in order to deal with the most pressing problems in physics research today. In the present work, a new integrative and uncomplicated numerical simulation method (NSM) is used to compute the full-energy (photo) peak efficiency of a regular hexagonal prism NaI(Tl) gamma-ray detector using radioactive point sources situated non-axial within its front surface boundaries. This simulation method is based on the efficiency transfer method. Most of the mathematical formulas in this work are derived analytically and solved numerically. The main core of the NSM is the calculation of the effective solid angle for radioactive point sources, which are situated non-axially at different distances from the front surface of the detector. The attenuation of the γ-rays through the detector's material and any other materials in-between the source and the detector is taken into account. A remarkable agreement between the experimental and calculated by present formalism results has been observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.