In recent studies from Sweden and the United States, a high vitamin A intake has been associated with low bone mineral density (BMD) and increased fracture risk. In Sweden and the United States, food items such as milk and breakfast cereals are fortified with vitamin A, whereas in Denmark there is no mandatory fortification with vitamin A. In the present study, we investigated relations between vitamin A intake and BMD and fracture risk in a Danish population consuming mostly unfortified food items. Within a population-based cohort study in 2,016 perimenopausal women, associations between BMD and vitamin A intake were assessed at baseline and after 5-year follow-up. Moreover, associations between baseline vitamin A intake and 5-year changes in BMD were studied. Finally, fracture risk was assessed in relation to vitamin A intake. In our cohort, dietary retinol intake (0.53 mg/day) was lower than the intake reported in recent studies form Sweden (0.78 mg/day) and the United States (1.66 mg/day). Cross-sectional and longitudinal analyses showed no associations between intake of vitamin A and BMD of the femoral neck or lumbar spine. Neither did BMD differ between those 5% who had the highest, and those 5% who had the lowest, vitamin A intake. During the 5-year study period, 163 subjects sustained a fracture (cases). Compared to 978 controls, logistic regression analyses revealed no difference in vitamin A intake. Thus, in a Danish population, average vitamin A intake is lower than in Sweden and the United States and not associated with detrimental effects on bone.
The aim of this study was to study the influence of hormone replacement therapy (HRT) on weight changes, body composition, and bone mass in early postmenopausal women in a partly randomized comprehensive cohort study design. A total of 2016 women ages 45-58 years from 3 months to 2 years past last menstrual bleeding were included. One thousand were randomly assigned to HRT or no HRT in an open trial, whereas the others were allocated according to their preferences. All were followed for 5 years for body weight, bone mass, and body composition measurements. Body weight increased less over the 5 years in women randomized to HRT (1.94 ؎ 4.86 kg) than in women randomized to no HRT (2.57 ؎ 4.63, p ؍ 0.046). A similar pattern was seen in the group receiving HRT or not by their own choice. The smaller weight gain in women on HRT was almost entirely caused by a lesser gain in fat. The main determinant of the weight gain was a decline in physical fitness. Women opting for HRT had a significantly lower body weight at inclusion than the other participants, but the results in the self-selected part of the study followed the pattern found in the randomized part. The change in fat mass was the strongest predictor of bone changes in untreated women, whereas the change in lean body mass was the strongest predictor when HRT was given. Body weight increases after the menopause. The gain in weight is related to a decrease in working capacity. HRT is associated with a smaller increase in fat mass after menopause. Fat gain protects against bone loss in untreated women but not in HRT-treated women. The data suggest that women's attitudes to HRT are more positive if they have low body weight, but there is no evidence that the conclusions in this study are skewed by selection bias. (J Bone Miner Res 2003;18:333-342)
Bone densitometry using dual energy X-ray absorptiometry (DXA) is frequently used to diagnose osteoporosis and to identify patients at risk of later fractures. The parameters of interest are bone mineral content (BMC) and bone mineral areal density (BMD). Bone densitometry results have a large overlap between normals and patient with fractures. This would suggest that other factors are important for the development of fractures or that bone densitometry is not used optimally. It is generally believed that the conversion of BMC to BMD by division of the former by the projected bone area is a good normalization procedure. Other normalization procedures have been attempted in the past with little success. We hypothesized that this might be due to a blurring effect of time since menopause, and that body size could be demonstrated to have an effect on measured BMC and BMD, if this time effect could be eliminated. The results of this study, comprising 1625 early post-menopausal women studied at virtually the same time since menopause, confirm that this is the case. Body surface area was the parameter among conventional body size variables showing the highest correlation with BMC and BMD. It was clearly shown that low values of BMD were seen more often in the lowest than in the highest body surface area quartile. The difference between quartiles was statistically significant. Simple division of BMC by actual body surface area or division of BMD by the square root of body surface removed the uneven distribution between the body surface area quartiles for lumbar spine and femoral neck measurements, and reduced it at peripheral measuring sites. It is suggested that BMC and BMD of the lumbar spine and the femoral neck should be normalized as described to avoid overdiagnosis of osteoporosis in persons of petite body stature and underdiagnosis in tall ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.