In adipocytes, oxidative stress and chronic inflammation are closely associated with metabolic disorders, including insulin resistance, obesity, cardiovascular disease, and type 2 diabetes. However, the molecular mechanisms underlying these metabolic disorders have not been thoroughly elucidated. In this report, we demonstrate that overexpression of glucose-6-phosphate dehydrogenase (G6PD) in adipocytes stimulates oxidative stress and inflammatory responses, thus affecting the neighboring macrophages. Adipogenic G6PD overexpression promotes the expression of pro-oxidative enzymes, including inducible nitric oxide synthase and NADPH oxidase, and the activation of nuclear factor-B (NF-B) signaling, which eventually leads to the dysregulation of adipocytokines and inflammatory signals. Furthermore, secretory factors from G6PD-overexpressing adipocytes stimulate macrophages to express more proinflammatory cytokines and to be recruited to the adipocytes; this would cause chronic inflammatory conditions in the adipose tissue of obesity. These effects of G6PD overexpression in adipocytes were abolished by pretreatment with NF-B inhibitors or antioxidant drugs. Thus, we propose that a high level of G6PD in adipocytes may mediate the onset of metabolic disorders in obesity by increasing the oxidative stress and inflammatory signals. Diabetes
Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme that regulates cellular redox potential. In this study, we demonstrate that macrophage G6PD plays an important role in the modulation of proinflammatory responses and oxidative stress. The G6PD levels in macrophages in the adipose tissue of obese animals were elevated, and G6PD mRNA levels positively correlated with those of proinflammatory genes. Lipopolysaccharide (LPS) and free fatty acids, which initiate proinflammatory signals, stimulated macrophage G6PD. Overexpression of macrophage G6PD potentiated the expression of proinflammatory and prooxidative genes responsible for the aggravation of insulin sensitivity in adipocytes. In contrast, when macrophage G6PD was inhibited or suppressed via chemical inhibitors or small interfering RNA (siRNA), respectively, basal and LPS-induced proinflammatory gene expression was attenuated. Furthermore, macrophage G6PD increased activation of the p38 mitogen-activated protein kinase (MAPK) and NF-B pathways, which may lead to a vicious cycle of oxidative stress and proinflammatory cascade. Together, these data suggest that an abnormal increase of G6PD in macrophages promotes oxidative stress and inflammatory responses in the adipose tissue of obese animals.
Liver X receptor (LXR)␣ and LXR play important roles in fatty acid metabolism and cholesterol homeostasis. Although the functional roles of LXR in the liver, intestine, fat, and macrophages are well established, its role in pancreatic -cells has not been clearly defined. In this study, we revealed that chronic activation of LXR contributes to lipotoxicity-induced -cell dysfunction. We observed significantly elevated expression of LXR in the islets of diabetic rodent models, including fa/fa ZDF rats, OLETF rats, and db/db mice.
Increased reactive oxygen species (ROS) induce pancreatic β-cell dysfunction during progressive type 2 diabetes. Glucose-6-phosphate dehydrogenase (G6PD) is a reduced nicotinamide adenine dinucleotide phosphate-producing enzyme that plays a key role in cellular reduction/oxidation regulation. We have investigated whether variations in G6PD contribute to β-cell dysfunction through regulation of ROS accumulation and β-cell gene expression. When the level of G6PD expression in pancreatic islets was examined in several diabetic animal models, such as db/db mice and OLEFT rats, G6PD expression was evidently up-regulated in pancreatic islets in diabetic animals. To investigate the effect of G6PD on β-cell dysfunction, we assessed the levels of cellular ROS, glucose-stimulated insulin secretion and β-cell apoptosis in G6PD-overexpressing pancreatic β-cells. In INS-1 cells, G6PD overexpression augmented ROS accumulation associated with increased expression of prooxidative enzymes, such as inducible nitric oxide synthase and reduced nicotinamide adenine dinucleotide phosphate oxidase. G6PD up-regulation also caused decrease in glucose-stimulated insulin secretion in INS-1 cells and primary pancreatic islets. Moreover, elevated G6PD expression led to β-cell apoptosis, concomitant with the increase in proapoptotic gene expression. On the contrary, suppression of G6PD with small interference RNA attenuated palmitate-induced β-cell apoptosis. Together, these data suggest that up-regulation of G6PD in pancreatic β-cells would induce β-cell dysregulation through ROS accumulation in the development of type 2 diabetes.
Liver X receptor (LXR) is a ligand-activated transcription factor that plays important roles in cholesterol and lipid homeostasis. However, ligand-induced posttranslational modification of LXR is largely unknown. Here, we show that ligand-free LXRalpha is rapidly degraded by ubiquitination. Without ligand, LXRalpha interacts with an ubiquitin E3-ligase protein complex containing breast and ovarian cancer susceptibility 1 (BRCA1)-associated RING domain 1 (BARD1). Interestingly, LXR ligand represses ubiquitination and degradation of LXRalpha, and the interaction between LXRalpha and BARD1 is inhibited by LXR ligand. Consistently, T0901317, a synthetic LXR ligand, increased the level of LXRalpha protein in liver. Moreover, overexpression of BARD1/BRCA1 promoted the ubiquitination of LXRalpha and reduced the recruitment of LXRalpha to the target gene promoters, whereas BARD1 knockdown reversed such effects. Taken together, these data suggest that LXR ligand prevents LXRalpha from ubiquitination and degradation by detaching BARD1/BRCA1, which might be critical for the early step of transcriptional activation of ligand-stimulated LXRalpha through a stable binding of LXRalpha to the promoters of target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.