Over 500 million people interact daily with Facebook. Yet, whether Facebook use influences subjective well-being over time is unknown. We addressed this issue using experience-sampling, the most reliable method for measuring in-vivo behavior and psychological experience. We text-messaged people five times per day for two-weeks to examine how Facebook use influences the two components of subjective well-being: how people feel moment-to-moment and how satisfied they are with their lives. Our results indicate that Facebook use predicts negative shifts on both of these variables over time. The more people used Facebook at one time point, the worse they felt the next time we text-messaged them; the more they used Facebook over two-weeks, the more their life satisfaction levels declined over time. Interacting with other people “directly” did not predict these negative outcomes. They were also not moderated by the size of people's Facebook networks, their perceived supportiveness, motivation for using Facebook, gender, loneliness, self-esteem, or depression. On the surface, Facebook provides an invaluable resource for fulfilling the basic human need for social connection. Rather than enhancing well-being, however, these findings suggest that Facebook may undermine it.
Prior research indicates that Facebook usage predicts declines in subjective well-being over time. How does this come about? We examined this issue in 2 studies using experimental and field methods. In Study 1, cueing people in the laboratory to use Facebook passively (rather than actively) led to declines in affective well-being over time. Study 2 replicated these findings in the field using experience-sampling techniques. It also demonstrated how passive Facebook usage leads to declines in affective well-being: by increasing envy. Critically, the relationship between passive Facebook usage and changes in affective well-being remained significant when controlling for active Facebook use, non-Facebook online social network usage, and direct social interactions, highlighting the specificity of this result. These findings demonstrate that passive Facebook usage undermines affective well-being.
Over the past several years, the field of cancer research has directed increased interest towards subsets of obesity-associated tumours, which include mammary, renal, oesophageal, gastrointestinal and reproductive cancers in both men and women. The increased risk of breast cancer that is associated with obesity has been widely reported; this has drawn much attention and as such, warrants investigation of the key mechanisms that link the obese state with cancer aetiology. For instance, the obese setting provides a unique adipose tissue microenvironment with concomitant systemic endocrine alterations that favour both tumour initiation and progression. Major metabolic differences exist within tumours that distinguish them from non-transformed healthy tissues. Importantly, considerable metabolic differences are induced by tumour cells in the stromal vascular fraction that surrounds them. The precise mechanisms that underlie the association of obesity with cancer and the accompanying metabolic changes that occur in the surrounding microenvironment remain elusive. Nonetheless, specific therapeutic agents designed for patients with obesity who develop tumours are clearly needed. This Review discusses recent advances in understanding the contributions of obesity to cancer and their implications for tumour treatment.
We examined rodent models with altered levels of mitoNEET, a protein residing in the mitochondrial outer membrane. Adipocyte-specific overexpression of mitoNEET enhances lipid-uptake and storage, leading to an expansion of adipose tissue mass. Despite the resulting massive obesity, benign aspects of adipose tissue expansion prevail and insulin sensitivity is preserved. MitoNEET inhibits mitochondrial iron transport into the matrix. Since iron is a rate-limiting component for electron transport, mitoNEET reduces β-oxidation rates. This is associated with reduced mitochondrial membrane potential and reduced reactive oxygen species damage, along with higher levels of adiponectin production. Conversely, the reduction of mitoNEET enhances mitochondrial respiratory capacity through enhanced iron content in the matrix, with reduced weight gain on a high fat diet. However, a reduction of mitoNEET also causes heightened oxidative-stress and glucose-intolerance. MitoNEET is therefore a potent regulator of mitochondrial function that profoundly impacts the dynamics of cellular and whole-body lipid homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.