The problem of increasing performance of carbide too lin machining hard-to-machine materials has been studied. Composite material was developed comprising carbide with heat-resistant bond Co-Re, significantly increasing resistance of carbide to thermoplastic deformation, and nanodispersed multilayer composite coating, significantly reducing thermomechanical impact on cutting part of tool.Studies to find the performance of tool made of developed composite material in turning hardened steel40H and heat-resistant nickel alloy HN77TYUR have shown its superiority compared to commercial carbides with coatings of modern generation.Studies have found out practicability of using VRK-13 cobalt-rhenium carbides with reduced content of expensive rhenium from 9% (weight) Re to 6% (weight), and it is highly competitive by heat resistance with VRK-15 carbide and is significantly superior to it by its strength.Results of cutting properties research forultra-dispersed Re-added WC-Co-carbides with Ti-TiN-TiCrAlNnano-dispersed multilayer composite coating are presented at longitudinal turning of constructional steels and hard-to-machine alloys. It is shown that the combination of ultra-dispersedheat-resistant WC-(Co,Re)-carbides and wear-resistant Ti-TiN-TiCrAlN coatings increase cutting properties of tool in some times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.