We prove, in particular, that if E is a Dedekind complete atomless Riesz space and X is a Banach space then the sum of a narrow and a C-compact laterally continuous orthogonally additive operators from E to X is narrow. This generalizes in several directions known results on narrowness of the sum of a narrow and a compact operators for the settings of linear and orthogonally additive operators defined on Köthe function spaces and Riesz spaces.
We generalize the notion of a laterally convergent net from increasing nets to general ones and study the corresponding lateral continuity of maps. The main result asserts that, the lateral continuity of an orthogonally additive operator is equivalent to its continuity at zero. This theorem holds for operators that send laterally convergent nets to any type convergent nets (laterally, order or norm convergent).
It is known that the sum of every two narrow operators on $L_1$ is narrow, however the same is false for $L_p$ with $1 < p < \infty$. The present paper continues numerous investigations of the kind. Firstly, we study narrowness of a linear and orthogonally additive operators on Kothe function spaces and Riesz spaces at a fixed point. Theorem 1 asserts that, for every Kothe Banach space $E$ on a finite atomless measure space there exist continuous linear operators $S,T: E \to E$ which are narrow at some fixed point but the sum $S+T$ is not narrow at the same point. Secondly, we introduce and study uniformly narrow pairs of operators $S,T: E \to X$, that is, for every $e \in E$ and every $\varepsilon > 0$ there exists a decomposition $e = e' + e''$ to disjoint elements such that $\|S(e') - S(e'')\| < \varepsilon$ and $\|T(e') - T(e'')\| < \varepsilon$. The standard tool in the literature to prove the narrowness of the sum of two narrow operators $S+T$ is to show that the pair $S,T$ is uniformly narrow. We study the question of whether every pair of narrow operators with narrow sum is uniformly narrow. Having no counterexample, we prove several theorems showing that the answer is affirmative for some partial cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.