We prove, in particular, that if E is a Dedekind complete atomless Riesz space and X is a Banach space then the sum of a narrow and a C-compact laterally continuous orthogonally additive operators from E to X is narrow. This generalizes in several directions known results on narrowness of the sum of a narrow and a compact operators for the settings of linear and orthogonally additive operators defined on Köthe function spaces and Riesz spaces.
Our main result asserts that, under some assumptions, the uniformly-to-order continuity of an order bounded orthogonally additive operator between vector lattices together with its horizontally-to-order continuity implies its order continuity (we say that a mapping f : E → F between vector lattices E and F is horizontally-to-order continuous provided f sends laterally increasing order convergent nets in E to order convergent nets in F, and f is uniformly-to-order continuous provided f sends uniformly convergent nets to order convergent nets).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.