Our first result asserts that, for linear regular operators acting from a Riesz space with the principal projection property to a Banach lattice with an order continuous norm, the $C$-compactness is equivalent to the $AM$-compactness. Next we prove that, under mild assumptions, every linear section of a $C$-compact orthogonally additive operator is $AM$-compact, and every linear section of a narrow orthogonally additive operator is narrow.