Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody–antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs) to various targets in vivo.
The particle size is one of critical parameters influencing the biodistribution of detonation nanodiamonds (DND) after their administration into the body. As DNDs are prone to aggregation, the difference between their sizes in aqueous and physiological solutions has to be taken into account. Radioactive I125-BSA molecules were covalently immobilized on DNDs divided in three fractions of different average size. The DND-BSAI125 conjugates were intravenously administrated into adult mice and the particle allocation in the animal's organs and blood was evaluated based on the radioactivity distribution. We conclude that most of the conjugates were taken from the bloodstream and trapped in the liver and spleen. The short-term distribution pattern for all DNDs was similar regardless of size and practically unchanged with time. No significant clearance of the particles was observed for 4 h, but the presence of DNDs was detected in the blood. It was found that the largest particles tend to accumulate more into the liver as compared to the smaller ones. However, the size effect was not well pronounced for the studied size range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.