In the case of valuable cold-rolled Cu/Al clad plates, billet surface treatment before rolling is a significant process that can affect the bonding efficiency and quality. While the current studies primarily focus on the influence of rolling parameters, insufficient attention has been paid to surface treatment. In this study, the effects of mechanical surface treatment on the bonding mechanism and bonding properties of cold-rolled Cu/Al clad plates were investigated. The results showed that different mechanical surface treatments have significant effects on the surface morphology, roughness, and residual stress. In addition, the effect of surface mechanical treatment on bonding quality was also observed to be critical. When the grinding direction was consistent with the rolling direction (RD), the bonding quality of the Cu/Al clad plates was significantly improved. After surface treatment along the RD for 20 s, the Cu/Al clad plates showed the highest shear strength (78 MPa), approximately four times as high as that of the unpolished samples. Simultaneously, the peel strength of this process was also significantly higher than that achieved via the other processes. Finally, on the basis of the surface morphology, roughness, and residual stress, the effect of surface treatment on the bonding mechanism and bonding properties of Cu/Al clad plates was analyzed. This study proposes a deeper understanding of the bonding behavior and bonding mechanism for cold rolled clad plates processed via mechanical surface treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.