Context. Protoplanetary disks are vital objects in star and planet formation, possessing all the material, gas and dust, which may form a planetary system orbiting the new star. Small, simple molecules have traditionally been detected in protoplanetary disks; however, in the ALMA era, we expect the molecular inventory of protoplanetary disks to significantly increase. Aims. We investigate the synthesis of complex organic molecules (COMs) in protoplanetary disks to put constraints on the achievable chemical complexity and to predict species and transitions which may be observable with ALMA. Methods. We have coupled a 2D steady-state physical model of a protoplanetary disk around a typical T Tauri star with a large gas-grain chemical network including COMs. We compare the resulting column densities with those derived from observations and perform ray-tracing calculations to predict line spectra. We compare the synthesised line intensities with current observations and determine those COMs which may be observable in nearby objects. We also compare the predicted grain-surface abundances with those derived from cometary comae observations. Results. We find COMs are efficiently formed in the disk midplane via grain-surface chemical reactions, reaching peak grain-surface fractional abundances ∼10 −6 -10 −4 that of the H nuclei number density. COMs formed on grain surfaces are returned to the gas phase via non-thermal desorption; however, gas-phase species reach lower fractional abundances than their grain-surface equivalents, ∼10 −12 -10 −7 . Including the irradiation of grain mantle material helps build further complexity in the ice through the replenishment of grain-surface radicals which take part in further grain-surface reactions. There is reasonable agreement with several line transitions of H 2 CO observed towards T Tauri star-disk systems. There is poor agreement with HC 3 N lines observed towards LkCa 15 and GO Tau and we discuss possible explanations for these discrepancies. The synthesised line intensities for CH 3 OH are consistent with upper limits determined towards all sources. Our models suggest CH 3 OH should be readily observable in nearby protoplanetary disks with ALMA; however, detection of more complex species may prove challenging, even with ALMA "Full Science" capabilities. Our grain-surface abundances are consistent with those derived from cometary comae observations providing additional evidence for the hypothesis that comets (and other planetesimals) formed via the coagulation of icy grains in the Sun's natal disk.
We present the results of chemical modeling of complex organic molecules (COMs) 2 under conditions typical for prestellar cores. We utilize an advanced gas-grain astrochemical model with updated gas-phase chemistry, with a multilayer approach to ice-surface chemistry and an up-to-date treatment of reactive desorption based on recent experiments of Minissale et al. (2016b). With the chemical model, radial profiles of molecules including COMs are calculated for the case of the prototypical prestellar core L1544 at the timescales when the modeled depletion factor of CO becomes equal to that observed. We find that COMs can be formed efficiently in L1544 up to the fractional abundances of 10(-10) wrt. total hydrogen nuclei. Abundances of many COMs such as CH 3 OCH 3 , HCOOCH 3 , and others peak at similar radial distances of 2000-4000 AU. Gas-phase abundances of COMs depend on the efficiency of reactive desorption, which in turn depends on the composition of the outer monolayers of icy mantles. In prestellar cores, the outer monolayers of mantles likely include large fractions of CO and its hydrogenation products, which may increase the efficiency of reactive desorption according to Minissale et al. (2016b), and makes the formation of COMs efficient under conditions typical for prestellar cores, although this assumption is yet to be confirmed experimentally. The hydroxyl radical (OH) appears to play an important role in gas-phase chemistry of COMs, which makes it deserving further detailed studies.
The recent discovery of terrestrial-type organic species such as methyl formate and dimethyl ether in the cold interstellar gas has proved that the formation of organic matter in the Galaxy begins at a much earlier stage of star formation than was thought before. This discovery represents a challenge for astrochemical modelers. The abundances of these molecules cannot be explained by the previously developed "warm-up" scenario, in which organic molecules are formed via diffusive chemistry on surfaces of interstellar grains starting at 30 K, and then released to the gas at higher temperatures during later stages of star formation. In this article, we investigate an alternative scenario in which complex organic species are formed via a sequence of gas-phase reactions between precursor species formed on grain surfaces and then ejected into the gas via efficient reactive desorption, a process in which non-thermal desorption occurs as a result of conversion of the exothermicity of chemical reactions into the ejection of products from the surface. The proposed scenario leads to reasonable if somewhat mixed results at temperatures as low as 10 K and may be considered as a step towards the explanation of abundances of terrestrial-like organic species observed during the earliest stages of star formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.