The degree to which osmotic stress changes the volume of mammalian central neurons has not previously been determined. We isolated CA1 pyramidal cells and measured cell volume in four different ways. Extracellular osmolarity (pio) was lowered by omitting varying amounts of NaCl and raised by adding mannitol; the extremes of pio tested ranged from 134 to 396 mosm/kg. When pio was reduced, cell swelling varied widely. We distinguished three types of cells according to their response: "yielding cells" whose volume began to increase immediately; "delayed response cells" which swelled after a latent period of 2 min or more; and "resistant cells" whose volume did not change during exposure to hypo-osmotic solution. When pio was raised, most cells shrank slowly, reaching minimal volume in 15-20 min. We observed neither a regulatory volume decrease nor an increase. We conclude that the water permeability of the membrane of hippocampal CA1 pyramidal neurons is low compared to that of other cell types. The mechanical support of the plasma membrane given by the cytoskeleton may contribute to the resistance to swelling and protect neurons against swelling-induced damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.