Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of high mass proteins (> 100,000 Da), directly deposited on polyethylene membranes, is demonstrated. The spectral quality obtained, using standard sample preparation conditions, is equal or superior to that obtained with metal sample stages. Compared to the use of poly(vinylidene difluoride) transfer membranes, this material allows the acquisition of excellent quality MALDI mass spectra from high-mass proteins with a standard UV laser. This gain in capability is not at the expense of either mass accuracy or signal reproducibility; both approach that obtained with standard sample preparations on stainless steel. In addition, for the applications shown, the use of PE as a sample support reduces the severe ion suppression effects typically observed in the MALDI analysis of high-mass mixtures. This permits more precise mass measurements to be made via the use of internal calibration and is illustrated by the mass measurement of a chimeric mouse/human antibody (MW approximately 150,000 Da) by coaddition of bovine albumin dimer (MW approximately 130,000 Da).
Monitoring the stability of immunoglobulin G (IgG) type antibodies is a crucial analytical issue spanning a wide variety of immunological/biotechnological studies, which includes the analysis of conjugated IgG's for drug delivery. Capillary electrophoresis (CE) has proven valuable for the analysis of proteins and has the potential to separate and detect native antibody components. An ideal complement to CE, which is capable of providing the desired detection specificity to provide species identification information, is matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Utilizing these two techniques we have developed an antibody examination procedure and monitored the degradation of an internalizing chimeric (human/mouse) monoclonal antibody (BR96). Electropherograms of the antibody after up to 166 h of thermal stress are presented; MALDI mass spectra of the stressed antibody were acquired at the same time points. At 166 h, the percentage of ionization carried by the intact antibody molecular ions M+, M2+, etc., had clearly decreased, while that due to additional ion species had significantly increased. Ions corresponding in mass to loss of one light chain, loss of an Fab arm to yield an Fab/c type fragment, and formation of separated heavy-chain and light-chain moieties were observed. Several of these fragments result from simple disulfide linkage disruption. In addition, species less in mass than common antibody subunits were also observed, demonstrating peptide as well as disulfide bond cleavage. The observation that a small number of well-defined species were formed during the study suggests that the cleavage induced by thermal stress is very site-specific within the IgG.
This paper reports the design of an on-line semi-preparative LC-SPE-NMR system and its use in the structural analysis of mixture components at the 0.02-1% level. The combination provides at least a five fold mass sensitivity increase over that obtained from typical analytical LC-SPE systems and a >30-fold total NMR sensitivity enhancement over analysis by LC-NMR. This is accomplished by using a novel on-line device to store, dilute (1-100-fold) and deliver (at an optimized flow-rate) the isolated component of interest to an SPE trap unit. The SPE unit consists of two cartridges connected in parallel to increase the overall SPE capacity and also to decrease the flow-rate through each trap for enhanced trapping efficiency. As the coupling of semi-preparative LC with NMR (through SPE) is well matched in terms of optimal mass loading for both techniques, only one LC-SPE cycle is required to enrich a 50 microg ml(-1) component (1% in a 5 mg ml(-1) mixture) for the acquisition of heteronuclear (1)H-(13)C NMR data using a conventional NMR flow probe. Furthermore, analytes at the 0.02% level (approximately 1 microg ml(-1)) can be studied using 2D (1)H NMR techniques if peak cuts from replicate sample injections (> or =3) are accumulated into the storage/dilution unit and the resulting solution processed by just one SPE trap and elute cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.