When a laser pulse of intensity 10(19) W cm(-2) interacts with solid targets, electrons of energies of some tens of MeV are produced. In a tantalum target, the electrons generate an intense highly directional gamma-ray beam that can be used to carry out photonuclear reactions. The isotopes 11C, 38K, (62,64)Cu, 63Zn, 106Ag, 140Pr, and 180Ta have been produced by (gamma,n) reactions using the VULCAN laser beam. In addition, laser-induced nuclear fission in 238U has been demonstrated, a process which was theoretically predicted at such laser intensities more than ten years ago. The ratio of the 11C and the 62Cu beta(+) activities yields shot-by-shot temperatures of the suprathermal electrons at laser intensities of approximately 10(19) W cm(-2).
Gamma-ray spectrometry is a surveying technique that allows the calculation of the heat produced during radioactive decay of potassium, uranium, and thorium within rock. Radiogenic heat producing rocks are often targets for geothermal exploration and production. Hence, refinements in gamma-ray spectrometry surveying will allow better constraint of resources estimation and help to target drilling. Gamma-rays have long half-lengths compared to other radiation produced during radiogenic decay. This property allows the gamma-rays to penetrate far enough through media to be detected by airborne or ground based surveying. A recent example of ground-based surveying in Scotland shows the ability of gamma-ray spectrometry to quickly and efficiently categorize granite plutons as low or high heat producing. Some sedimentary rocks (e.g., black shales) also have high radiogenic heat production properties and could be future geothermal targets. Topographical, atmospheric and spatial distribution factors (among others) can complicate the collection of accurate gamma-ray data in the field. Quantifying and dealing with such inaccuracies represents an area for further improvement of these techniques for geothermal applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.