The generation of runaway electrons during disruptions poses a serious threat for the operation of ITER. The efficiency of the injection of large amounts of impurities by massive gas injection or shattered pellet injection to achieve runaway suppression might be compromised due to low gas mixture efficiency and the high Rosenbluth density for runaway suppression. The transport of runaway electrons is dominated by magnetic perturbations. The magnetic perturbations have the advantage of expelling the runaway seeds before they reach high energy. Robust runaway suppression has been reached on J-TEXT with mode locking by the application of m/n = 2/1 resonant magnetic perturbations before the thermal quench. The mode locking implemented large magnetic islands inside the plasma which acted as an explosive bomb during disruptions and led to stronger stochasticity in the whole plasma cross section. The NIMROD simulation indicates that this strong stochasticity expels the runaway seeds and results in runaway free disruptions on J-TEXT. This might provide an alternative runaway suppression technique during disruptions for large-scale tokamaks.
The suppression of disruption-generated runaway electrons (REs) by supersonic molecular beam injection (SMBI) has been investigated on the J-TEXT tokamak. Experimental results demonstrate that the hydrogen injected by SMBI during plasma current flattop phase can provoke magnetic perturbations, which increase RE losses rapidly. The effective radial diffusion coefficient of REs due to SMBI is estimated as D r ≈ 16 m 2 s −1 . Based on this benefit, the SMBI has been used to explore the suppression of disruption-generated REs. In J-TEXT, RE current is created with rapid argon injection by a massive gas injection valve. It is found that hydrogen SMBI before disruption efficiently suppresses the generation of RE current.
Fast electron bremsstrahlung (FEB) emission during Ohmic discharge experiments on the Joint Texas Experimental Tokamak (J-TEXT) has been measured by a recently developed vertical multi-channel FEB diagnostic based on CdZnTe detectors. There are 5 sight lines to observe the vertical emission of fast electrons at the high-field side with a spatial resolution of 5 cm. The FEB emission in the energy range of 30-300 keV can be measured. The generation of fast electrons accelerated by loop voltage has been confirmed during the early phase of discharge by analyzing the signals of FEB emission. The runaway electron beam instabilities have been observed with the FEB diagnostic on J-TEXT.
A large number of runaway electrons (REs) with energies as high as several tens of megaelectron volt (MeV) may be generated during disruptions on a large-scale tokamak. The kinetic energy carried by REs is eventually deposited on the plasma-facing components, causing damage and posing a threat on the operation of the tokamak. The remaining magnetic energy following a thermal quench is significant on a large-scale tokamak. The conversion of magnetic energy to runaway kinetic energy will increase the threat of runaway electrons on the first wall. The magnetic energy dissipated inside the vacuum vessel (VV) equals the decrease of initial magnetic energy inside the VV plus the magnetic energy flowing into the VV during a disruption. Based on the estimated magnetic energy, the evolution of magnetic-kinetic energy conversion are analyzed through three periods in disruptions with a runaway current plateau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.