Lung cancer poses one of the most significant challenges to modern medicine, killing thousands every year. Current therapy involves surgical resection supplemented with chemotherapy and radiotherapy due to high rates of relapse. Shortcomings of currently available chemotherapy protocols include unacceptably high levels of systemic toxicity and low accumulation of drug at the tumor site. Loco-regional delivery of nanocarriers loaded with anticancer agents has the potential to significantly increase efficacy, while minimizing systemic toxicity to anticancer agents. Local drug administration at the tumor site using nanoparticulate drug delivery systems can reduce systemic toxicities observed with intravenously administered anticancer drugs. In addition, this approach presents an opportunity for sustained delivery of anticancer drug over an extended period of time. Herein, the progress in the development of locally administered nanomedicines for the treatment of lung cancer is reviewed. Administration by inhalation, intratumoral injection and means of direct in situ application are discussed, the benefits and drawbacks of each modality are explored.
Abstract. A technique is presented which yields single cells and intact crypts in suspension from unfixed rat intestinal mucosal epithelium. Everted lengths of intestine were digested by 27 mM sodium citrate in phosphate‐buffered saline (pH = 7.3) at 37°C. Mucosal cells were dislodged by vibratory stress (hand vortexing) following incubation for prescribed intervals at 37°C in 1.5 mM ethylenediamine tetraacetic acid (EDTA) and 0.5 mM dithiothreitol (dtt). Alkaline phosphatase determinations, phase microscopy, and in vivo and in vitro evaluations of tritiated thymidine ([3H]TdR) incorporation were performed on isolated intestinal cells. Data indicate that cells were sequentially derived from villus tip to crypt base as judged by cellular morphology, alkaline phosphatase activity/mg protein and radioactivity per μg protein. Upon completion of the intestinal cell isolation assay, scanning electron microscopy of the remaining intestine revealed that approximately 95% of the crypt openings were vacant; the villi were totally denuded; the supporting structures, including the lamina propria, appeared intact. In vitro radiolabelling of intestinal cell fractions enriched with crypts revealed a linear incorporation of [3H]TdR from 0–60 min which was strongly influenced by the presence of foetal calf serum (FCS). Measurements of the compensatory response of the mucosa to resection of 70% of the small bowel indicated that the mucosal cell separation is capable of detecting alterations in crypt cell proliferation. Previously, such alterations were monitored by other methods utilizing microdissection procedures or stathmokinetic agents.
Circulating erythrocytes from rats were examined up to 30 weeks post whole-body exposures of 1.0 R for alterations in the expression of net negative surface charge as measured by whole-cell microelectrophoresis in saline sorbitol. Erythrocyte electrophoretic mobility was determined in an apparatus composed of a horizontal transilluminated cylindrical chamber, equipped with a reversible, blacked platinum electrode, immersed in a water bath maintained at 25.0 +/- 1.0 degree C (Rank Brothers). In two separate experiments, recurrent decreases in the expression of net negative surface charge occurred at 10, 17, and 30 weeks post-irradiation. At these times distributional analyses of recorded erythrocyte electrophoretic mobility (EEPM) values revealed a skewing of the normally distributed EEPM population values to lower EEPM. Total sialic acid content released from hydrolyzed erythrocyte membrane preparations revealed no significant differences between erythrocytes from sham and irradiated animals. In vivo post-irradiation labeling of erythrocytes with diisopropyl-[32P] phosphorofluoridate at 4 and 33 weeks (separate experiments) indicated only a minor abbreviated erythrocyte life span at 33 weeks. Therefore, effects from low dose (1.0 R) whole-body irradiation would appear to include a recurrent defect in the expression of the net negative surface charge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.