Image analysis algorithms are often highly parameterized and much human input is needed to optimize parameter settings. This incurs a time cost of up to several days. We analyze and characterize the conventional parameter optimization process for image analysis and formulate user requirements. With this as input, we propose a change in paradigm by optimizing parameters based on parameter sampling and interactive visual exploration. To save time and reduce memory load, users are only involved in the first step - initialization of sampling - and the last step - visual analysis of output. This helps users to more thoroughly explore the parameter space and produce higher quality results. We describe a custom sampling plug-in we developed for CellProfiler - a popular biomedical image analysis framework. Our main focus is the development of an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. We implemented this in a prototype called Paramorama. It provides users with a visual overview of parameters and their sampled values. User-defined areas of interest are presented in a structured way that includes image-based output and a novel layout algorithm. To find optimal parameter settings, users can tag high- and low-quality results to refine their search. We include two case studies to illustrate the utility of this approach.
Most graph visualization techniques focus on the structure of graphs and do not offer support for dealing with node attributes and edge labels. To enable users to detect relations and patterns in terms of data associated with nodes and edges, we present a technique where this data plays a more central role. Nodes and edges are clustered based on associated data. Via direct manipulation users can interactively inspect and query the graph. Questions that can be answered include, "which edge types are activated by specific node attributes?" and, "how and from where can I reach specific types of nodes?" To validate our approach we contrast it with current practice. We also provide several examples where our method was used to study transition graphs that model real-world systems.
Abstract. In this chapter, we describe tasks that are typically encountered during visual multivariate network analysis. First, we present an overview of the entities and properties of multivariate networks and discuss a taxonomy for general visualisation tasks. We next describe a framework for multivariate network tasks and show how these tasks can be composed of lower-level tasks of the general taxonomy. We also include several real-world examples of multivariate network tasks as illustrations.
We present a new approach for the visual analysis of state transition graphs. We deal with multivariate graphs where a number of attributes are associated with every node. Our method provides an interactive attribute-based clustering facility. Clustering results in metric, hierarchical and relational data, represented in a single visualization. To visualize hierarchically structured quantitative data, we introduce a novel technique: the bar tree. We combine this with a node-link diagram to visualize the hierarchy and an arc diagram to visualize relational data. Our method enables the user to gain significant insight into large state transition graphs containing tens of thousands of nodes. We illustrate the effectiveness of our approach by applying it to a real-world use case. The graph we consider models the behavior of an industrial wafer stepper and contains 55 043 nodes and 289 443 edges.
Cell lineages describe the developmental history of cell populations and are produced by combining time-lapse imaging and image processing. Biomedical researchers study cell lineages to understand fundamental processes, such as cell differentiation and the pharmacodynamic action of anticancer agents. Yet, the interpretation of cell lineages is hindered by their complexity and insufficient capacity for visual analysis. We present a novel approach for interactive visualisation of cell lineages. Based on an understanding of cellular biology and live-cell imaging methodology, we identify three requirements: multimodality (cell lineages combine spatial, temporal, and other properties), symmetry (related to lineage branching structure), and synchrony (related to temporal alignment of cellular events). We address these by combining visual summaries of the spatiotemporal behaviour of an arbitrary number of lineages, including variation from average behaviour, with node-link representations that emphasise the presence or absence of symmetry and synchrony. We illustrate the merit of our approach by presenting a real-world case study where the cytotoxic action of the anticancer drug topotecan was determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.