Manganese (Mn) is an essential nutrient for growth and development. Unfortunately, overexposure can lead to neurological damage, which is manifested as a movement disorder marked by tremors. Preclinical symptoms have been found in populations occupationally exposed to the element, and it is suggested that in late stages of the disorder, removing the Mn exposure will not prevent symptoms from progressing. Hence, it is desirable to have a means of monitoring Mn body burden. In vivo neutron activation analysis (IVNAA) is a technique which allows the concentration of some elements to be determined within sites of the body without invasive procedures. Data in the literature suggests that the Mn concentration in bone is greater than other tissues, and that it may be a long term storage site following exposure. Therefore, using the McMaster KN-accelerator to produce neutrons through the 7Li(p,n)7Be reaction, the feasibility of IVNAA for measuring Mn levels in the human hand bone was investigated. Mn is activated through the 55Mn(n,gamma)56Mn reaction, and the 847 keV gamma rays emitted when 56Mn decays are measured outside the body using NaI(Tl) detectors. An optimal incident proton energy of 2.00 MeV was determined from indium foil and microdosimetry measurements. Hand phantom data suggest a minimum detectable limit of approximately 1.8 ppm could be achieved with a reasonably low dose of 50 mSv to the hand (normal manganese levels in the human hand are approximately 1 ppm). It is recommended the technique be developed further to make human in vivo measurements.
The developed model makes predictions compatible with features of available experimental data. Break complexity has to be addressed in biophysical modelling when the relative effectiveness of radiations in DNA damage is studied. Obtained data strongly argue against the dominance of direct radiation action in DNA damage in the cellular environment predicted by some theoretical studies.
The use of a tissue equivalent proportional counter (TEPC) filled with propane based tissue equivalent gas simulating a 2 microm diameter tissue sphere has been investigated to estimate the radiation quality factor of the neutron fields used in in vivo neutron activation measurements at the McMaster University 3 MV Van de Graaff accelerator. The counter response to estimate the effective quality factor based on the definitions of Q(L) provided in ICRP 26 and 60 as a function of neutron energy has been examined experimentally using monoenergetic and continuous neutron spectra in the energy range of 35 to 600 keV. In agreement with other studies, the counter failed to provide a flat R(Q) response and showed a sharp drop below 200 keV neutron energy. Development of an algorithm to evaluate the quality factors using measured dose-mean lineal energy, yD, and comparison of the algorithm with other reported algorithms and analytical methods developed for the improvement in TEPC dose equivalent response has been reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.