In this paper, a new simple oscillator model is considered describing ice-induced vibrations of upstanding, water-surrounded, and bottom-founded offshore structures. Existing models are extended by taking into account deformations of an ice floe and a moving contact interaction between an ice rod, which is cut out from the floe, and the oscillator which represents the offshore structure. Special attention is paid to a type of ice-induced vibrations of structures, known as frequency lock-in, and characterized by having the dominant frequency of the ice forces near a natural frequency of the structure. A new asymptotical approach is proposed that allows one to include ice floe deformations and to obtain a nonlinear equation for the simple oscillator vibrations. The instability onset, induced by resonance effects for the oscillator and generated by the ice rod structure interaction, is studied in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.