Industrial Control Systems (ICS) are used to control physical processes in critical infrastructure. These systems are used in a wide variety of operations such as water treatment, power generation and distribution, and manufacturing. While the safety and security of these systems are of serious concern, recent reports have shown an increase in targeted attacks aimed at manipulating physical processes to cause catastrophic consequences. This trend emphasizes the need for algorithms and tools that provide resilient and smart attack detection mechanisms to protect ICS. In this paper, we propose an anomaly detection framework for ICS based on a deep neural network. The proposed methodology uses dilated convolution and long short-term memory (LSTM) layers to learn temporal as well as long term dependencies within sensor and actuator data in an ICS. The sensor/actuator data are passed through a unique feature engineering pipeline where wavelet transformation is applied to the sensor signals to extract features that are fed into the model. Additionally, this paper explores four variations of supervised deep learning models, as well as an unsupervised support vector machine (SVM) model for this problem. The proposed framework is validated on Secure Water Treatment testbed results. This framework detects more attacks in a shorter period of time than previously published methods.
To account for privacy perceptions and preferences in user models and develop personalized privacy systems, we need to understand how users make privacy decisions in various contexts. Existing studies of privacy perceptions and behavior focus on overall tendencies toward privacy, but few have examined the contextspecific factors in privacy decision making. We conducted a survey on Mechanical Turk (N=401) based on the theory of planned behavior (TPB) to measure the way users' perceptions of privacy factors and intent to disclose information are affected by three situational factors embodied hypothetical scenarios: information type, recipients' role, and trust source. Results showed a positive relationship between subjective norms and perceived behavioral control, and between each of these and situational privacy attitude; all three constructs are significantly positively associated with intent to disclose. These findings also suggest that, situational factors predict participants' privacy decisions through their influence on the TPB constructs. CCS CONCEPTS• Security and privacy → Human and societal aspects of security and privacy.
In order to create user-centric and personalized privacy management tools, the underlying models must account for individual users' privacy expectations, preferences, and their ability to control their information sharing activities. Existing studies of users' privacy behavior modeling attempt to frame the problem from a request's perspective, which lack the crucial involvement of the information owner, resulting in limited or no control of policy management. Moreover, very few of them take into the consideration the aspect of correctness, explainability, usability, and acceptance of the methodologies for each user of the system. In this paper, we present a methodology to formally model, validate, and verify personalized privacy disclosure behavior based on the analysis of the user's situational decision-making process. We use a model checking tool named UPPAAL to represent users' self-reported privacy disclosure behavior by an extended form of finite state automata (FSA), and perform reachability analysis for the verification of privacy properties through computation tree logic (CTL) formulas. We also describe the practical use cases of the methodology depicting the potential of formal technique towards the design and development of user-centric behavioral modeling. This paper, through extensive amounts of experimental outcomes, contributes several insights to the area of formal methods and user-tailored privacy behavior modeling. CCS CONCEPTS• Security and privacy → Formal methods and theory of security.
The concern regarding users’ data privacy has risen to its highest level due to the massive increase in communication platforms, social networking sites, and greater users’ participation in online public discourse. An increasing number of people exchange private information via emails, text messages, and social media without being aware of the risks and implications. Researchers in the field of Natural Language Processing (NLP) have concentrated on creating tools and strategies to identify, categorize, and sanitize private information in text data since a substantial amount of data is exchanged in textual form. However, most of the detection methods solely rely on the existence of pre-identified keywords in the text and disregard the inference of underlying meaning of the utterance in a specific context. Hence, in some situations these tools and algorithms fail to detect disclosure, or the produced results are miss classified. In this paper, we propose a multi-input, multi-output hybrid neural network which utilizes transfer-learning, linguistics, and metadata to learn the hidden patterns. Our goal is to better classify disclosure/non-disclosure content in terms of the context of situation. We trained and evaluated our model on a human-annotated ground truth dataset, containing a total of 5,400 tweets. The results show that the proposed model was able to identify privacy disclosure through tweets with an accuracy of 77.4% while classifying the information type of those tweets with an impressive accuracy of 99%, by jointly learning for two separate tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.