The present study was described thin layer chromatography (TLC) and ultra-high performance liquid chromatography (UHPLC) method for the detection of antibacterial substances in poultry muscle (breast and thigh), kidney, and liver.Materials and Methods: TLC method was used for screening detection of tetracycline, amoxicillin, ciprofloxacin, and enrofloxacin residues in poultry tissues. The samples were extracted with trichloroacetic acid (30%), diethyl ether, followed by detection in pre-coated TLC paper on ultraviolet detector. The UHPLC method was used for the quantification of antimicrobial residues in poultry tissues. Results:The residues of tetracycline were 48% in livers, 24% in kidneys, 20% in thigh muscles, and 24% in breast muscles. Ciprofloxacin residues were found 44% in liver, 42% in kidneys, 34% in thigh muscles and 30% in breast muscles. Enrofloxacin residues were found 40% in liver, 34% in kidneys, 22% in thigh muscles, and 18% in breast muscles. Amoxicillin residues were found 42% in liver, 30% in kidneys, 26% in thigh muscles and 22% in breast muscles. Most of the cases highest residues were found in liver such as tetracycline (48%), ciprofloxacin (44%), enrofloxacin (40%) and amoxicillin (42%) and almost lowest in breast muscles. In addition, nine positive samples from broiler were selected for amoxicillin residue quantification by UHPLC. It was observed that the concentration of amoxicillin residue in liver was ranging from 16.92 μg/kg to 152.62 μg/kg and in breast muscle was 45.38 μg/kg to 60.55 μg/kg, respectively. The maximum and minimum peak time was 4.7-5.2 min. Among the poultry tissues, liver had the highest level of antibiotic residues in comparison to other samples but the variation was not significant (p>0.05). Conclusions:Evidence suggests that more judicious use of antimicrobials in food animals will reduce the selection of resistant bacteria and help to preserve these valuable drugs for both human and veterinary medicine. The method described in this study is a simple, easy inexpensive which can be readily adopted by any laboratory for the detection of antibiotic residues in tissues of food-producing animals.
Aim:The study was conducted to detection and determination of concentration or level of antibiotic residues in milk and egg of local and commercial farms at Chittagong during December 2011 to June 2012.Materials and Methods:A total of 400 (200 milk and 200 egg) samples were collected from local and commercial dairy cows and local scavenging and commercial poultry farms, respectively. Microbial inhibition test and thin layer chromatography were used for screening and ultra-high performance liquid chromatography was used to estimate the concentrations of antibiotic residues in samples.Results:Tetracycline, amoxicillin, and ciprofloxacin residues were significantly (p ≤ 0.05) higher in commercial farms than local. The boiling insignificantly (p>0.05) reduced residues level in milk and egg. The average concentrations of amoxicillin residue in local milk, commercial milk, local egg, and commercial egg were 9.84 µg/ml, 56.16 µg/ml, 10.46 µg/g and 48.82 µg/g, respectively, in raw samples and were reduced to 9.81 µg/ml, 55.54 µg/ml, 10.29 µg/g, and 48.38 µg/g, respectively, after boiling.Conclusions:Proper maintaining of the withdrawal period and development of active surveillance system are highly recommended for public health security.
A crossbred (Sindhi × local indigenous) calf that was 12 days old was admitted to the Teaching Veterinary Hospital, Chittagong Government Veterinary College, Bangladesh, with two accessory hind limbs attached to the pelvic region in between the hind legs. This was clinically identified as a congenital anomaly popularly called pygomelia. The pygomelia was successfully corrected by surgical excisions.
Aim: Antimicrobial residue in animal food products is an important index of food safety. Antimicrobial residues could result from chemotherapeutic or chemoprophylactic use of drugs in food animals. This occurrence of residue in animal food products has received enormous worldwide attention from some local, international, and public health agencies. A crosssectional study was conducted from July to December 2009 to detect the antibiotic residues in tissues and eggs of laying hens at Chittagong of Bangladesh. Materials and Methods: Microbial inhibition test (MIT) and thin layer chromatography (TLC) methods were used to detect antibacterial residues in poultry tissues (liver, kidney, breast, and thigh muscles) and eggs. The bacteria and pH of the MIT method were as follows: Bacillus subtilis on test agar medium with a pH of 7.2, Bacillus cereus with a pH of 6.0, and Escherichia coli at pH with an 8.0. Results:The overall prevalence of antibiotic residues detected by MIT was 64% in liver, 63% in kidney, 56% in breast muscle, 50% in thigh muscle, and 60% in eggs. There was significant variation in results between MIT and TLC (p<0.05). Tetracycline residues were found in 48% in liver, 24% in kidneys, 20% in thigh muscles, 26% in breast muscles, and 36% in eggs. Ciprofloxacin residues were found 46% in liver, 42% in kidneys, 34% in thigh muscles, 30% in breast muscles, and 30% in eggs. Enrofloxacin residues were found 40% in livers, 36% in kidneys, 24% in thigh muscles, 20% in breast muscles, and 26% in eggs. Amoxicillin residues were found 48% in livers, 30% in kidneys, 26% in thigh muscles, 22% in breast muscles, and 24% in eggs. The most frequently detected antibiotic residues by both MIT and TLC were found in liver tissue, tetracycline (48%), ciprofloxacin (46%), enrofloxacin (40%), and amoxicillin (42%) were found in liver. Breast muscle tissue was least likely to contain antibiotic residues (24%). Tetracycline (p=0.01) and amoxicillin (p=0.03) residues had significant variation among the various poultry tissues and eggs. Conclusions: A high percentage of tissues and eggs that could be available for human consumption had antibiotic residues. This study suggests that poultry meat and eggs should not be circulated to markets until the end of the drug's withdrawal period. It is also recommended to observe the withdrawal period of drugs before poultry slaughter or table egg distribution to avoid antimicrobial resistance and to inform both owners and consumers about the risks of antibiotic residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.