Apparently mundane, amorphous nanostructures of carbon have optical properties which are as exotic as their crystalline counterparts. In this work we demonstrate a simple and inexpensive mechano-chemical method to prepare bulk quantities of self-passivated, amorphous carbon dots. Like the graphene quantum dots, the water soluble, amorphous carbon dots too, exhibit excitation-dependent photoluminescence with very high quantum yield (~40%). The origin and nature of luminescence in these high entropy nanostructures are well understood in terms of the abundant surface traps. The photoluminescence property of these carbon dots is exploited to detect trace amounts of the nitro-aromatic explosive — 2,4,6-trinitrophenol (TNP). The benign nanostructures can selectively detect TNP over a wide range of concentrations (0.5 to 200 µM) simply by visual inspection, with a detection limit of 0.2 µM, and consequently outperform nearly all reported TNP sensor materials.
We report the production of an efficient anti-corrosive coating of cold-rolled (CR) steel in a seawater environment (∼3.5 wt% NaCl aqueous solution) using an oil-based graphene oxide ink. The graphene oxide was produced by heating Aeschynomene aspera plant as a carbon source at 1600 °C in an argon atmosphere. The ink was prepared by cup-milling the mixture of graphene oxide and sunflower oil for 10 min. The coating of ink on the CR steel was made using the dip-coating method, followed by curing at 350 °C for 10 min in air atmosphere. The results of the potentiodynamic polarization show that the corrosion rate of bare CR steel decreases nearly 10,000-fold by the ink coating. Furthermore, the salt spray test results show that the red rusting in the ink-coated CR steel is initiated after 100 h, in contrast to 24 h and 6 h in the case of oil-coated and bare CR steel, respectively. The significant decrease in the corrosion rate by the ink-coating is discussed based on the impermeability of graphene oxide to the corrosive ions.
We report synthesis and luminescent characteristics of core-shell nanostructures of silicon and silicon oxide having two different morphologies—spherical (nanodot) and rodlike (nanorod), prepared by controlled oxidation of mechanically milled crystalline silicon and by exfoliation of the affected layer of porous silicon. Colloidal suspensions of these nanostructures exhibit intense room temperature photoluminescence (PL), detectable with the unaided eye. PL band peak energies of the colloidal suspensions formed from porous silicon are blue shifted by ∼1 eV compared to the as-prepared films on silicon substrate. In addition, PL spectra of all the colloidal suspensions blueshift with increase in excitation energy but the PL peaks of as-prepared porous silicon are independent of excitation. However, shape of the nanocrystals (spherical or rodlike) is found to have little effect on the emission spectra. These observations are explained in terms discretization of phonon density of states and electronic transitions involving surface defect states and quantum confinement induced widened band states.
We report the synthesis of spherical core-shell structures of silicon and silicon oxide by a novel route of forced external oxidation of ball milled silicon. Structural investigations reveal the formation of a crystalline silicon core surrounded by an amorphous oxide shell, with core and shell dimensions varying approximately between 4–10 and 55–170 nm, respectively. The observations suggest partial amorphization of crystalline silicon, invasive oxygen induced passivation of dangling bonds, and formation of different types of defects in the nanocrystalline silicon/silicon oxide core-shell structure, particularly at the interfaces. No detectable photoluminescence (PL) is obtained from the as-milled silicon, but the oxidized core-shell structures exhibit strong room temperature PL, detectable with unaided eye. The peak energy of the PL spectra blueshifts with an increase in excitation energy, with the peak positions varying from 2.24 to 2.48 eV under external excitation ranging from 2.41 to 3.5 eV. The observed PL characteristics are explained in terms of dominant electronic transitions between the localized defect states and quantum confinement induced widened band states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.