The conventional ordinary O-mode and the extraordinary X-mode in the electron cyclotron range of frequencies are not suitable for core heating in high-β spherical tokamak plasmas, like the National Spherical Torus Experiment [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th International Atomic Energy Agency Fusion Energy Conference, (International Atomic Energy Agency, Vienna, 1999), Vol. 3, p. 1135], as they are weakly damped at high harmonics of the electron cyclotron frequency. However, electron Bernstein waves (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBWs via mode conversion of either the X-mode or the O-mode. The two mode conversions are optimized in different regions of the parameter space spanned by the parallel wavelength and wave frequency. The conditions for optimized mode conversion to EBWs are evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. From geometric optics ray tracing it is found that the EBWs damp strongly near the Doppler-broadened resonance at harmonics of the electron cyclotron frequency.
Abstract. Optimal design and use of electron cyclotron heating (ECH) requires that accurate and relatively quick computer codes be available for prediction of wave coupling, propagation, damping, and current drive at realistic levels of EC power. To this end, a number of codes have been developed in laboratories worldwide. A detailed comparison of these codes is desirable since they use a variety of methods for modeling 2 the behavior and effects of the waves. The approach used in this benchmarking study is to apply these codes to a small number of representative cases. Following minor remedial work on some codes, the agreement between codes for off-axis application is excellent.The largest systematic differences are found between codes with weakly relativistic and fully relativistic evaluation of the resonance condition, but even there the differences amount to less than 0.02 in normalized minor radius. For some other cases, for example for central current drive, the code results may differ significantly due to differences in the physics models used.
It is well known that absolute instabilities can be located by prescribed mappings from the complex frequency plane to the wave-number plane through the dispersion relation D(w, k) = 0. However, in many systems of physical interest the dispersion relation is polynominal in w while transcendental in k, and the implementation of this mapping procedure is particularly difficult. If one maps consecutive deformations of the Fourier integral path (originally along the real k-axis) into the w-plane, points having (8D/8k) = 0 are readily detected by the distinctive feature of their local maps. It is shown that a simple topological relationship between these points and the image of the real k-axis determines the stability characteristics of the system, without mapping from the w-plane back into the k-plane.
In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on the properties of RF waves has not been quantified experimentally, it is of interest to carry out a theoretical study to determine if fluctuations can affect the propagation characteristics of RF waves. Usually, the difference between the plasma density inside the filament and the background plasma density is sizable; the ratio of the density difference to the background density being of order one. Generally, this precludes the use of geometrical optics in determining the effect of fluctuations since the relevant ratio has to be much less than one; typically, of the order of 10% or less. In this paper, a full-wave, analytical model is developed for the scattering of a RF plane wave by a cylindrical plasma filament. It is assumed that the plasma inside and outside the filament is cold and uniform, and that the major axis of the filament is aligned along the toroidal magnetic field. The ratio of the density inside the filament to the density of the background plasma is not restricted. The theoretical framework applies to the scattering of any cold plasma wave. In order to satisfy the boundary conditions at the interface between the filament and the background plasma, the electromagnetic fields inside and outside the filament need to have the same k ∥ , the wave vector parallel to the ambient magnetic field, as the incident plane wave. Consequently, in contrast to the scattering of a RF wave by a spherical blob [A. K. Ram, K. Hizanidis, and Y. Kominis, Phys. Plasmas 20, 056110-1-056110-10 (2013)], the scattering by a field-aligned filament does not broaden the k ∥ spectrum. However, the filament induces side-scattering leading to surface waves, and can also couple some power to the cold plasma wave different from the incident wave. The changes induced by a filament in the propagation of electron cyclotron waves and lower hybrid waves are illustrated by numerical results displaying the properties of the Poynting vector. The Poynting flux in the wake of the filament, and directed towards the core of the plasma, develops a spatial structure due to diffraction and shadowing. Thus, the fluctuations affect the uniformity of power flow into the plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.