The crystallization behaviour of jarosite and schwertmannite has been studied by precipitation-aging experiments performed using different parent-solution concentrations at acidic conditions and ambient temperature. Schwertmannite exhibits low crystallinity and is the only mineral identified during low-concentration (LC) experiments. However, in high-concentration (HC) experiments, a relatively rapid Ostwald ripening process leads to the transformation of schwertmannite into natrojarosite. The presence of sodium modifies the morphology and stability of the obtained phases. TEM observations reveal that schwertmannite particles consist of disoriented nanodomains (~6 nm) spread in an amorphous mass. In contrast, natrojarosite particles exhibit a single-domain, highly crystalline core, with the crystallinity decreasing from core to rim. The thermal behaviour of these phases depends on both their composition and their degree of crystallinity. TG and DTG analyses show that, below 500 °C, the amount of structural water is clearly higher in schwertmannite than in natrojarosite. The present results highlight the role of the ripening processes in epigenetic conditions and could be important in interpreting the formation of jarosite in Earth and Martian surface environments.
Calcium phosphate cements have the advantage that they can be prepared as a paste that sets in a few minutes and can be easily adapted to the shape of the bone defect, which facilitates its clinical application. In this research, six formulations of brushite (dicalcium phosphate dihydrated) cement were obtained and the effect of the addition of sodium alginate was analyzed, such as its capacity as a tetracycline release system. The samples that contain sodium alginate set in 4 or 5 min and showed a high percentage of injectability (93%). The cements exhibit compression resistance values between 1.6 and 2.6 MPa. The drug was released in a range between 12.6 and 13.2% after 7 days. The antimicrobial activity of all the cements containing antibiotics was proven. All samples reached values of cell viability above 70 percent. We also observed that the addition of the sodium alginate and tetracycline improved the cell viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.