Fluidic self-assembly is a new technique which makes possible the integration of devices fabricated using dissimilar materials and processes. The integration is accomplished by fluidically transporting trapezoidally shaped blocks made of one material into similarly shaped holes in a receptor substrate. In this paper, a systematic study of the FSA integration efficiency is presented. Blocks and holes were formed from silicon using anisotropic etching. Two different sizes were considered: large blocks of dimension 1.0 mm x 1.2 mm, and small blocks of dimension 150 p m x 150 pm.FSA wm performed in either water or methanol using a bubble pump apparatus to recirculate blocks. FSA of large blocks resulted in 100% fXng of a substrate containing 191 holes within 2.5 minutes. Similar experiments with small blocks and a substrate with a 64 x 64 array of holes yielded a fill ratio of 70%, due to undesirable adhesion of blocks to the substrate surface. Roughening the substrate resulted in a fill ratio of 90%. Also presented is a simple rate equation model of the FSA process, along with a discussion of which process parameters are important and how they can be optimized. BACKGROUND
The advancement in technology in semiconductor materials significantly contributed in improvement of human life by bringing breakthrough in fabrication of optoelectronics and power devices which have wide applications in medicine and communication. The Gallium Arsenide (GaAs) and Gallium Nitride (GaN) are versatile materials for such applications but with relative merits and demerits. GaAs transistors are suitable for both narrowband and wideband applications due to very wide operating frequency range (30 MHz to millimetre-wave frequencies as high as 250 GHz). They are highly sensitive, generate very little internal noise and have power density typically around 1.5 W/mm. But low break down voltage (5x105V/cm), low output power (5-10W) and inability to withstand higher temperatures are the main limitations. On the other hand, GaN possess the improved physical and chemical characteristics, with high output power, high operating temperature (1000°C in vacuum), fast heat dissipation, high breakdown voltage (4x106V/cm), high power density (5-12W/mm), high frequency characteristics and large band gap (3.4eV) which allow significant reduction of devise size. Also high breakdown voltage increases the overall impedance which make it suitable in matching process and enables efficient operation in broad band region. The present paper critically analyses the GaAs and GaN semiconductors in relation to their significant physical and chemical properties, which make them suitable to make efficient power and optoelectronics devices for applications in communication, space and medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.