We investigated the role of the chondrocyte primary cilium in mechanotransduction events related to cartilage extracellular matrix synthesis. We generated conditionally immortalized wild-type (WT) and IFT88(orpk) (ORPK) mutant chondrocytes that lack primary cilia and assessed intracellular Ca(2+) signaling, extracellular matrix synthesis, and ATP release in response to physiologically relevant compressive strains in a 3-dimensional chondrocyte culture system. All conditions were compared to unloaded controls. We found that cilia were required for compression-induced Ca(2+) signaling mediated by ATP release, and an associated up-regulation of aggrecan mRNA and sulfated glycosaminosglycan secretion. However, chondrocyte cilia were not the initial mechanoreceptors, since both WT and ORPK cells showed mechanically induced ATP release. Rather, we found that primary cilia were required for downstream ATP reception, since ORPK cells did not elicit a Ca(2+) response to exogenous ATP even though WT and ORPK cells express similar levels of purine receptors. We suggest that purinergic Ca(2+) signaling may be regulated by polycystin-1, since ORPK cells only expressed the C-terminal tail. This is the first study to demonstrate that primary cilia are essential organelles for cartilage mechanotransduction, as well as identifying a novel role for primary cilia not previously reported in any other cell type, namely cilia-mediated control of ATP reception.
Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50 % increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA.
The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation.
Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly–disassembly dynamics are under rigid cell cycle‐dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol‐binding membrane glycoprotein, Prominin‐1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.
The primary cilium is an organelle acting as a master regulator of cellular signalling. We have previously shown that disruption of primary cilia assembly, through targeting intraflagellar transport, is associated with muted nitric oxide and prostaglandin responses to the inflammatory cytokine interleukin-1β (IL-1β). Here, we show that loss of the primary cilium disrupts specific molecular signalling events in cytosolic NFκB signalling. The induction of cyclooxygenase 2 (COX2) and inducible nitrous oxide synthase (iNOS) protein is abolished. Cells unable to assemble cilia exhibit unaffected activation of IκB kinase (IKK), but delayed and reduced degradation of IκB, due to diminished phosphorylation of inhibitor of kappa B (IκB) by IKK. This results in both delayed and reduced NFκB p65 nuclear translocation and nuclear transcript binding. We also demonstrate that heat shock protein 27 (hsp27), an established regulator of IKK, is localized to the ciliary axoneme and cellular levels are dramatically disrupted with loss of the primary cilium. These results suggest that the primary cilia compartment exerts influence over NFκB signalling. We propose that the cilium is a locality for regulation of the molecular events defining NFκB signalling events, tuning signalling as appropriate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.