Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly–disassembly dynamics are under rigid cell cycle‐dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol‐binding membrane glycoprotein, Prominin‐1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.
Investigations of the odontoblast phenotype are hindered by obstacles such as the limited number of odontoblasts within the dental pulp and the difficulty in purification of these cells. Therefore, it is necessary to develop a cell culture system in which the local environment is inductive and can promote dental pulp stem cells (DPSCs) to differentiate into odontoblast lineage. In this study, we investigated the effect of conditioned medium from developing tooth germ cells (TGCs) on the differentiation and dentinogenesis of DPSCs both in vitro and in vivo. DPSCs were enzymatically isolated from the lower incisors of 4-week-old Sprague-Dawley rats and co-cultured with TGC conditioned medium (TGC-CM). The cell phenotype of induced DPSCs presents many features of odontoblasts, as assessed by the morphologic appearance, cell cycle modification, increased alkaline phosphatase level, synthesis of dentin sialoprotein, type I collagen and several other noncollagenous proteins, expression of the dentin sialophosphoprotein and dentin matrix protein 1 genes, and the formation of mineralized nodules in vitro. The induced DPSC pellets in vivo generated a regular-shaped dentin-pulp complex containing distinct dentinal tubules and predentin, while untreated pellets spontaneously differentiated into bone-like tissues. To our knowledge, this is the first study to mimic the dentinogenic microenvironment from TGCs in vitro, and our data suggest that TGC-CM creates the most odontogenic microenvironment, a feature essential and effective for the regular dentinogenesis mediated by DPSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.