Comparative strength analysis of two popular options of the radial centrifugal fan impeller design used in horizontal conveyor dryer for fine-grained raw materials is presented. Three types of materials for impeller manufacturing—ASTM A36 steel, Hardox 450 steel and aluminium alloy 6061-T6 are considered. The finite element method (FEM) has been used to investigate stresses and deformations of the impeller within the operational speed range. Analysis shows that the better design is the impeller made of Hardox 450 steel with a central disk. Although the maximum stress is slightly higher in the blades slot for central disk fitting for this design option, it has greatly reduced stresses in contact edges with two other disks (by 22–38%) and blades bending deformation (by 51%). For this design, the maximum operational rotation speed is 1135 min−1 according to the yield strength with a 15% safety factor, while for basic design, it is 1225 min−1. The rational choice of material depends on maximum value of the yield stress to density ratio as well as taking into account the operating conditions and required fan performance. Recommendations for manufacturing the centrifugal fan impeller related to chosen material are given.
Questions of numerical simulation of acoustic oscillations generation modes in the liquid flow around the groups of two and three circular cylinders are considered. In mining industry the processes of hydrodynamic impact on gas-saturated porous media produce significant acoustic emission both at the injection stage and at the liquid discharge stage. Simulation of such kind of acoustic processes is one of the actual problems of theoretical and applied fluid mechanics and under certain assumptions could be reduced to the flow around a group of bodies. Two approaches for numerical simulation of the acoustic oscillations generation induced by the flow around circular cylinders based on numerical solution of the Navier-Stokes equations for compressible and incompressible flows closed by differential model of turbulence and complemented by acoustic analogy equations have been developed. For laminar flows, eight different modes that fundamentally differ both in the flow structure and in the frequency spectrum of parameter oscillations have been identified. For turbulent flows, the classification criteria for the three main frequency modes are presented. Acoustic data are obtained using the Direct Noise Computation technology and acoustic analogies as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.