In Coregonus lavaretus, prior the mesoderm segmentation, in cells adjacent to the notochord called adaxial cells MyoD and slow myosin heavy chain (MyHC-slow) proteins were observed. After somite formation, adaxial cells migrate towards the lateral part of the myotome and form a layer of red muscles. Deeper cells differentiate into white muscle fibres. In situ hybridization using Pax-3 molecular probe revealed, that after somitogenesis, Pax-3 is expressed in a layer of cells superficial to the myotome resembling the "external cells" (found in many teleosts species) or dermomyotome described in Amniota. During later developmental stages Pax-3 gene is expressed in cells in intermyotomal space and then in myoblasts between myotubes. In these cells Pax-7 protein was also observed. Pax-3/7 positive cells which have migrated into the myotomes differentiate into satellite cells/secondary myoblasts and participate in hypertrophic and hyperplastic growth of muscles.
During the myotomal myogenesis in pike (Esox lucius) two phases of muscle differentiation can be distinguished. In the first phase, the somite cells-derived stock, the primary myoblasts (of mesodermal origin), fuse to form multinucleate myotubes. Participation of myotomal cells of mesodermal origin is insufficient for further muscle development. In the second stage mesenchymal cells migrate, via myosepts, into the myotome between myotubes. Immunocytochemical detection of proliferating cell nuclear antigen (marker of S phase of cell cycle) showed their mitotic activity. Transmission electron microscope analysis revealed that the differentiation of these cells depends on their position. Cells remaining in the myosepts develop into fibroblasts and produce collagen fibres, while those that have migrated into the myotomes transform into secondary myoblasts. Mesenchymal cells in the studied species are believed to participate in hypertrophy and hyperplasy of muscle fibres. Thus the muscle fibres in pike (E. lucius) are of mesodermal-mesenchymal origin.
Somite differentiation, muscle fibres formation and growth were analysed in a non-model tropical fish Pterophyllum scalare. In this study, it was found that during somite differentiation, a primary myotome appears. The primary myotome is filled with multinucleated myotubes that constitute the major part of the somite. Subsequently, Pax-3 (paired-box protein)-positive cells, located externally to the myotomes, appear. In post-hatching stages, mononucleated proliferating cell nuclear antigen-positive cells are observed in the inter-myotomal spaces and within the myotomes. The mononucleated cells, situated in the myotomes, first express desmin in their cytoplasm and then Pax-7 (paired-box protein) in their nuclei. Expression of desmin indicates that they will enter myogenic pathway, whereas expression of Pax-7 suggests their role of satellite cells. We assume that mononucleated intramyotomal cells are myogenic precursors involved in muscle growth. In advanced (post-hatching) stages of myogenesis, myotomes contain both primary and new muscle fibres. Morphometric analyses show that in Pterophyllum scalare, growth of muscle fibres is mainly a result of hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.