We study the problem of the reconstruction of a Gaussian field defined in [0, 1] using N sensors deployed at regular intervals. The goal is to quantify the total data rate required for the reconstruction of the field with a given mean square distortion. We consider a class of two-stage mechanisms which a) send information to allow the reconstruction of the sensor's samples within sufficient accuracy, and then b) use these reconstructions to estimate the entire field. To implement the first stage, the heavy correlation between the sensor samples suggests the use of distributed coding schemes to reduce the total rate. We demonstrate the existence of a distributed block coding scheme that achieves, for a given fidelity criterion for the reconstruction of the field, a total information rate that is bounded by a constant, independent of the number N of sensors. The constant in general depends on the autocorrelation function of the field and the desired distortion criterion for the sensor samples. We then describe a scheme which can be implemented using only scalar quantizers at the sensors, without any use of distributed source coding, and which also achieves a total information rate that is a constant, independent of the number of sensors. While this scheme operates at a rate that is greater than the rate achievable through distributed coding and entails greater delay in reconstruction, its simplicity makes it attractive for implementation in sensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.