Divalent metal ion binding to the bacterial iron-storage protein, bacterioferritin (BFR), which contains a dinuclear metal binding site within each of its 24 subunits, was investigated by potentiometric and spectrophotometric methods. Cobalt(II) and zinc(II) were found to bind at both high- and low-affinity sites. Cobalt(II) binding at the high-affinity site was observed at a level of two per subunit with the release of approximately 1.6 protons per metal ion, thus confirming the dinuclear metal centre as the high-affinity site. Zinc(II) binding at the dinuclear centre (high-affinity site) resulted in the release of approximately 2 protons per metal ion, but exhibited a binding stoichiometry which indicated that not all dinuclear centres were capable of binding two zinc(II) ions. Competition data showed that binding affinities for the dinuclear centre were in the order zinc(II) > cobalt(II), and also confirmed the unexpected stoichiometry of zinc(II) binding. This work emphasises the importance of charge neutrality at the dinuclear centre.
The iron storage protein bacterioferritin (BFR) consists of 24 identical subunits, each containing a dinuclear metal binding site called the ferroxidase center, which is essential for fast iron core formation. Cobalt(II) binding to wild-type and site-directed variants of Escherichia coli BFR was studied by optical and magnetic techniques. Data from absorption spectroscopy demonstrate the binding of two cobalt(II) ions per subunit of wild-type and heme-free BFR, each with a pseudotetrahedral or pentacoordinate geometry, and EPR studies show that the two cobalt(II) ions are weakly magnetically coupled. Studies of variants of BFR in which a single glutamic acid residue at the ferroxidase center is replaced by alanine confirm that this is the site of cobalt(II) binding, since the altered centers bind only one cobalt(II) ion. This work shows that the electroneutrality of the ferroxidase center is preserved on binding a pair of divalent metal ions. Optical and EPR data show that cobalt(II) binding to BFR exhibits positive cooperativity, with an average Kd of approximately 1 x 10(-5) M. The favored filling of the ferroxidase center with pairs of metal ions may have mechanistic implications for the iron(II) binding process. Discrimination against oxidation of single iron(II) ions avoids odd electron reduction products of oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.