Natural killer T (NKT) cells recognize glycolipid antigens presented by the MHC class I-related glycoprotein CD1d. The in vivo dynamics of the NKT cell population in response to glycolipid activation remain poorly understood. Here, we show that a single administration of the synthetic glycolipid alpha-galactosylceramide (alpha-GalCer) induces long-term NKT cell unresponsiveness in mice. NKT cells failed to proliferate and produce IFN-gamma upon alpha-GalCer restimulation but retained the capacity to produce IL-4. Consequently, we found that activation of anergic NKT cells with alpha-GalCer exacerbated, rather than prevented, B16 metastasis formation, but that these cells retained their capacity to protect mice against experimental autoimmune encephalomyelitis. NKT cell anergy was induced in a thymus-independent manner and maintained in an NKT cell-autonomous manner. The anergic state could be broken by IL-2 and by stimuli that bypass proximal TCR signaling events. Collectively, the kinetics of initial NKT cell activation, expansion, and induction of anergy in response to alpha-GalCer administration resemble the responses of conventional T cells to strong stimuli such as superantigens. Our findings have important implications for the development of NKT cell-based vaccines and immunotherapies.
Diabetes in non-obese diabetic (NOD) mice is mediated by pathogenic T-helper type 1 (Th1) cells that arise because of a deficiency in regulatory or suppressor T cells. V alpha 14-J alpha 15 natural killer T (NKT) cells recognize lipid antigens presented by the major histocompatibility complex class I-like protein CD1d (refs. 3,4). We have previously shown that in vivo activation of V alpha 14 NKT cells by alpha-galactosylceramide (alpha-GalCer) and CD1d potentiates Th2-mediated adaptive immune responses. Here we show that alpha-GalCer prevents development of diabetes in wild-type but not CD1d-deficient NOD mice. Disease prevention correlated with the ability of alpha-GalCer to suppress interferon-gamma but not interleukin-4 production by NKT cells, to increase serum immunoglobulin E levels, and to promote the generation of islet autoantigen-specific Th2 cells. Because alpha-GalCer recognition by NKT cells is conserved among mice and humans, these findings indicate that alpha-GalCer might be useful for therapeutic intervention in human diseases characterized by Th1-mediated pathology such as Type 1 diabetes.
Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.