Методом энергетических неравенств получена априорная оценка решения первой краевой задачи для уравнения диффузии дискретно-распределенного порядка с обобщенными функциями памяти. Построен разностный аналог дробной производной дискретно-распределенного порядка с обобщенными функциями памяти (аналог формулы L1). Исследованы основные свойства этого разностного оператора и на его основе построены разностные схемы второго и четвертого порядков аппроксимации по пространственной переменной и дробного порядка $ 2{-}\alpha_0 $ по временной переменной. Доказана устойчивость предложенных разностных схем, а также их сходимость в сеточной $ L_2 $-норме со скоростью, равной порядку погрешности аппроксимации. Достоверность полученных результатов подтверждают численные расчеты, проведенные для тестовых примеров.