Методом энергетических неравенств получена априорная оценка решения первой краевой задачи для уравнения диффузии дискретно-распределенного порядка с обобщенными функциями памяти. Построен разностный аналог дробной производной дискретно-распределенного порядка с обобщенными функциями памяти (аналог формулы L1). Исследованы основные свойства этого разностного оператора и на его основе построены разностные схемы второго и четвертого порядков аппроксимации по пространственной переменной и дробного порядка $ 2{-}\alpha_0 $ по временной переменной. Доказана устойчивость предложенных разностных схем, а также их сходимость в сеточной $ L_2 $-норме со скоростью, равной порядку погрешности аппроксимации. Достоверность полученных результатов подтверждают численные расчеты, проведенные для тестовых примеров.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.