Abstract. The use of conceptual models is essential in the interpretation of reflection seismic data. It allows interpreters to make geological sense of seismic data, which carries inherent uncertainty. However, conceptual models can create powerful anchors that prevent interpreters from reassessing and adapting their interpretations as part of the interpretation process, which can subsequently lead to flawed or erroneous outcomes. It is therefore critical to understand how conceptual models are generated and applied to reduce unwanted effects in interpretation results. Here we have tested how interpretation of vertically exaggerated seismic data influenced the creation and adoption of the conceptual models of 161 participants in a paper-based interpretation experiment. Participants were asked to interpret a series of faults and a horizon, offset by those faults, in a seismic section. The seismic section was randomly presented to the participants with different horizontal–vertical exaggeration (1:4 or 1:2). Statistical analysis of the results indicates that early anchoring to specific conceptual models had the most impact on interpretation outcome, with the degree of vertical exaggeration having a subdued influence. Three different conceptual models were adopted by participants, constrained by initial observations of the seismic data. Interpreted fault dip angles show no evidence of other constraints (e.g. from the application of accepted fault dip models). Our results provide evidence of biases in interpretation of uncertain geological and geophysical data, including the use of heuristics to form initial conceptual models and anchoring to these models, confirming the need for increased understanding and mitigation of these biases to improve interpretation outcomes.
We propose a geometrically, kinematically, and mechanically viable thin-skinned kinematic forward model for a cross section intersecting the Mont Terri rock laboratory in the frontal-most part of the Jura fold-and-thrust belt, Switzerland. In addition to the available tunnel, borehole, and surface data, initial boundary conditions are crucial constraints for the forward modelling scenarios, especially the inherited topography of the basement and any pre-compressional offset within the Mesozoic sediments. Our kinematic analysis suggests an early-stage formation of the Mont Terri anticline located above ENE-trending, Late Paleozoic extensional faults, followed by back-stepping of the deformation developing the Clos du Doubs and Caquerelle anticlines further south. In this model, the thrust sequence was dictated by the inherited basement faults, which acted as nuclei for the ramps, detached along the basal décollement within the Triassic evaporites. The mechanical viability of both the thrust angles and thrust sequence was demonstrated by applying the limit analysis theory. Despite numerous subsurface geological data, extrapolation of structures to depth remains largely under-constrained. We have tested an alternative model for the same cross section, involving an upper detachment at the top of the Staffelegg Formation that leads to duplication of the sub-Opalinus Clay formations, prior to detachment and thrusting on the Triassic evaporites. This model is geometrically and kinematically viable, but raises mechanical questions. A total displacement of 2.9 and 14.2 km are inferred for the classical and the alternative scenarios, respectively. In the latter, forward modelling implies that material was transported 10.8 km along the upper detachment. It is not yet clear where this shortening might have been accommodated. Despite the differences in structural style, both models show that pre-existing basement structures might have interfered in time and space. Both styles may have played a role, with lateral variation dictated by basement inherited structures.
A palinspastic reconstruction of a 100 km long traverse through Archaean rocks of the East Pilbara, Western Australia, includes new observations of the deformation preceding the now visible greenstone belt pattern. The restoration is time-calibrated with all available U-Pb datings. Between incompletely preserved basin sequences, two superposed Palaeoarchaean volcano-sedimentary basins (the Coongan and Salgash Basins) are separated by an eastwards time-transgressive interface tentatively interpreted as an onlap surface. For over 140 Ma, the basin margin architecture was structurally controlled by superposed extensional growth fault arrays (D 1) with associated dyke swarms in a curved pattern spatially not related to that of the actual distribution of granite domes and greenstone belts. The basins are interpreted to have formed by collapse after arching above hotspots due to phase transitions by mini-subduction of slabs of cooled water-saturated basalt towards the base of an originally c. 45 km mafic crust. At c. 3.31 Ga, the extension was replaced by plate-driven regional NW-SE compression (D 2) inferred from NW-over-SE shear and ramp-and-flat thrusts, partly reversing offsets of the D 1 extension. The recognition of widespread D 2 pre-doming compression is important because it triggered the c. 3.18 Ga start of formation of the dome-and-keel pattern (D 3) visible today, which culminated at c. 2.9 Ga.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.