Context. BL Lacertae is the prototype of the blazar subclass named after it. Yet, it has occasionally shown a peculiar behaviour that has questioned a simple interpretation of its broad-band emission in terms of synchrotron plus synchrotron self-Compton (SSC) radiation. Aims. In the 2007-2008 observing season we carried out a new multiwavelength campaign of the Whole Earth Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the XMM-Newton satellite in July and December 2007, and January 2008, to study its emission properties, particularly in the optical-X-ray energy range. Methods. The source was monitored in the optical-to-radio bands by 37 telescopes. The brightness level was relatively low. Some episodes of very fast variability were detected in the optical bands. Flux changes had larger amplitude at the higher radio frequencies than at longer wavelengths. Results. The X-ray spectra acquired by the EPIC instrument onboard XMM-Newton are well fitted by a power law with photon index Γ ∼ 2 and photoelectric absorption exceeding the Galactic value. However, when taking into account the presence of a molecular cloud on the line of sight, the EPIC data are best fitted by a double power law, implying a concave X-ray spectrum. The spectral energy distributions (SEDs) built with simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations suggest that the peak of the synchrotron emission lies in the near-IR band, and show a prominent UV excess, besides a slight soft-X-ray excess. A comparison with the SEDs corresponding to previous observations with X-ray satellites shows that the X-ray spectrum is very variable, since it can change from extremely steep to extremely hard, and can be more or less curved in intermediate states. We ascribe the UV excess to thermal emission from the accretion disc, and the other broad-band spectral features to the presence of two synchrotron components, with their related SSC emission. We fit the thermal emission with a black body law and the non-thermal components by means of a helical jet model. The fit indicates a disc temperature > ∼ 20 000 K and a luminosity > ∼ 6 × 10 44 erg s −1 .
Context. M31N 2015M31N -01a (or M31LRN 2015 is a red nova that erupted in January 2015 -the first event of this kind observed in M 31 since 1988. Very few similar events have been confirmed as of 2015. Most of them are considered to be products of stellar mergers. Aims. Results of an extensive optical monitoring of the transient in the period January-March 2015 are presented. Methods. Eight optical telescopes were used for imaging. Spectra were obtained on the Large Altazimuth Telescope (BTA), the Gran Telecsopio Canarias (GTC) and the Rozhen 2 m telescope. Results. We present a highly accurate 70 d light curve and astrometry with a 0.05 uncertainty. The colour indices reached a minimum of 2−3 d before peak brightness and rapidly increased afterwards. The spectral type changed from F5I to F0I in 6 d before the maximum and then to K3I in the next 30 d. The luminosity of the transient was estimated to be 8.7 +3.3 −2.2 × 10 5 L during the optical maximum. Conclusions. Both the photometric and the spectroscopic results confirm that the object is a red nova, similar to V838 Monocerotis.
Context. The blazar AO 0235+164 was claimed to show a quasi-periodic behaviour in the radio and optical bands in the past, with the main outbursts repeating every 5-6 years. However Aims. In this paper, we present the radio-to-optical data taken by the WEBT together with the UV data acquired by the UltraViolet and Optical Telescope (UVOT) instrument onboard Swift to investigate both the outburst behaviour at different wavelengths and the nature of the extra emission component. Methods. Multifrequency light curves have been assembled with data from 27 observatories; optical and UV fluxes have been cleaned from the contamination of the southern active galactic nucleus (AGN). We have analysed spectral energy distributions at different epochs, corresponding to different brightness states; extra absorption by the foreground galaxy has been taken into account. Results. We found the optical outburst to be as strong as the big outbursts of the past: starting from late September 2006, a brightness increase of ∼5 mag led to the outburst peak in February 19-21, 2007. We also observed an outburst at mm and then at cm wavelengths, with an increasing time delay going toward lower frequencies during the rising phase. Cross-correlation analysis indicates that the 1 mm and 37 GHz flux variations lagged behind the R-band ones by about 3 weeks and 2 months, respectively. These short time delays suggest that the corresponding jet emitting regions are only slightly separated and/or misaligned. In contrast, during the outburst decreasing phase the flux faded contemporaneously at all cm wavelengths. This abrupt change in the emission behaviour may suggest the presence of some "shutdown" mechanism of intrinsic or geometric nature. The behaviour of the UV flux closely follows the optical and near-IR one. By separating the synchrotron and extra component contributions to the UV flux, we found that they correlate, which suggests that the two emissions have a common origin.
We present photometric and spectral observations of the symbiotic star ZZ CMi.We detect intranight variability-flickering and smooth variations in U band.The amplitude of the flickering is about 0.10 − 0.20 mag in U band. In the B band, the variability is lower, with amplitude ≤ 0.03 mag. We also detect variability in the H𝛼 and H𝛽 emission lines, and find an indication for outflow with velocity of about 120-150 km/s. The results indicate that ZZ CMi is an accretion-powered symbiotic containing an M4-M6 III cool component with a white dwarf resembling recurrent novae and jet-ejecting symbiotic stars.
We report Cousins R-band monitoring of the high-redshift (z = 4.40) radio-quiet quasar Q 2203+292 from 1999 May to 2007 October. The quasar shows maximum peak-to-peak light curve amplitude of ∼0.3 mag during the time of our monitoring, and ∼0.9 mag when combined with older literature data. The rms of a fit to the light curve with a constant is 0.08 and 0.2 mag, respectively. The detected changes are at ∼3σ level. The quasar was in a stable state during the recent years and it might have undergone a brightening event in the past. The structure function analysis concluded that the object shows variability properties similar to those of the lower redshift quasars. We set a lower limit to the Q 2203+292 broad-line region mass of 0.3-0.4 M . Narrow-band imaging search for redshifted Lyα from other emission-line objects at the same redshift shows no emission-line objects in the quasar vicinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.