Fruit enzymatic browning (EB) inhibition continues to be a challenge in the Food Industry. This physiological disorder results mainly from the oxidation of natural phenolic compounds by polyphenoloxidase (PPO) and peroxidase (POX) leading to the formation of brown pigments. EB can be controlled with the application of antioxidants, reducing/inhibiting the activity of these oxidative enzymes. In this study, strawberry tree (leaves and branches) and apple byproduct were the natural-based extracts (NES) selected, as potential tissue browning inhibitors, within a first screening of fifteen natural-based extracts with antioxidant properties. Phenolic profile, total phenolic content and antioxidant activity of the selected extracts were also performed as well as their depletion effect on the oxidative enzyme’s activity and browning inhibiton in fresh-cut pears. Strawberry tree extracts (leaves and branches) revealed higher total phenolic content (207.97 ± 0.01 mg GAE.gNES−1 and 104.07 ± 16.38 mg GAE.gNES−1, respectively), confirmed by the plethora of phenolic compounds identified by LC-ESI-UHR-QqTOF-HRMS and quantified by HPLC. This phytochemical composition was reflected in the low IC50 against PPO and POX obtained. Despite the lower phenolic content (6.76 ± 0.11 mg GAE.gNES−1) and antioxidant activity (IC50 = 45.59 ± 1.34 mg mL−1), apple byproduct extract showed potential in delaying browning. This study highlights the opportunity of byproducts and agricultural wastes extracts as novel anti-browning agents.
Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceu-tical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre-and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.