Arbuscular mycorrhizal fungi (AMF) have been used to promote numerous benefits to plants. In this study, we evaluated the symbiosis between AMF species (Rhizophagus clarus, Claroideoglomus etunicatum) and Piper nigrum L. ‘Bragantina’. Volatile compounds, lipoxygenase (LOX) and phenylalanine ammonia-lyase (PAL) activities, and total phenolic content were monitored from 1 to 60 days post-inoculation (dpi). Hyphae, arbuscles, and vesicles were observed during the root colonization. In the leaves, AMF induced an increase of sesquiterpene hydrocarbons (54.0%–79.0%) and a decrease of oxygenated sesquiterpenes (41.3%–14.5%) at 7 dpi and 60 dpi (41.8%–21.5%), respectively. Cubenol, the main volatile compound of leaves, showed a significant decrease at 7 dpi (21.5%–0.28%) and 45 dpi (20.4%–18.42%). β-caryophyllene, the major volatile compound of the roots, displayed a significant reduction at 45 dpi (30.0%–20.0%). LOX increased in the roots at 21, 30, and 60 dpi. PAL was higher in leaves during all periods, except at 60 dpi, and increased at 21 and 45 dpi in the roots. The total phenolic content showed a significant increase only in the roots at 30 dpi. The results suggested that AMF provided changes in the secondary metabolism of P. nigrum, inducing its resistance.
The aim of this study was to evaluate the changes in the production of secondary metabolites Piper aduncum seedlings were inoculated by spores of the arbuscular mycorrhizal fungi (AMF) Rhizophagus clarus and Claroideoglomus etunicatum. P. aduncum seedlings were inoculated by spores of R. clarus and C. etunicatum and then, development parameters, root colonization, lipoxygenase (LOX) activity, and essential oil (OE) chemical composition were monitored at 30, 60 and 90 days’ post-inoculation (dpi). The inoculation had influenced the plant height and root length at 30 and 90 dpi and microscopic analysis of roots showed the presence of hyphae, arbuscules and vesicles in the inoculated plants. Phenylpropanoids and sesquiterpene hydrocarbons were the main compounds in the EO. In the leaves, the concentration of phenylpropanoids showed a decrease, mainly at 60 dpi, with increased sesquiterpene hydrocarbon production. The main compounds were dillapiole, myristicin, and germacrene D; the dillapiole concentration decreased in all treatments. LOX activity had an increase in the leaves and roots at 90 dpi. These results suggest that alterations in the secondary metabolites of P . aduncum can be induced by its mechanisms of resistance during AMF interaction.
. Ayapana triplinervis (Asteraceae) é uma erva medicinal da Amazônia conhecida como "Japana branca" e "Japana roxa" utilizada como tônico, digestivo, antidiarréico dentre outros. Objetivou-se caracterizar neste estudo a morfoanatomia caulinar e foliar de A. triplinervis, para corroborar se esta espécie apresenta morfotipos, além de fornecer dados para sua identificação. Amostras foram coletadas no Horto de Plantas Medicinais da Universidade Federal Rural da Amazônia e Embrapa Amazônia Oriental, analisadas morfologicamente e segundo técnicas usuais em anatomia vegetal. O caule é cilíndrico branco ou roxo, com epiderme unisseriada persistente e endoderme com bainha amilífera e estrias de Caspary. As folhas são simples, opostas, triplinervadas, com base atenuada ou decorrente. Possuem estômatos anomocíticos, cera em placas ou granular, glândulas peroladas, mesofilo dorsiventral com feixes colaterais e ductos secretores. A. triplinervis apresentou caracteres morfoanatômicos diferentes entre os tipos branca e roxa, o que possibilita a distinção dos dois morfotipos. Palavras-chave:Ayapana, glândula perolada, morfotipos, planta medicinal. ABSTRACT: Morphoanatomy of the vegetative aerial axis of Ayapana triplinervis (Vahl) RM King & H. Rob. (Asteraceae).Ayapanatriplinervis (Asteraceae), also known as "Japana branca" and "Japana roxa" in Brazil, is a medicinal herb from the Amazon used as tonic, digestive, antidiarrheal, among others. This study aimed to characterize the morphoanatomy of the aerial vegetative axis of A. triplinervis to corroborate that this species has morphotypes, in order to provide data for their identification. Samples were collected in the Garden of Medicinal Plants of the Federal Rural University of Amazônia and Embrapa Amazônia Oriental, and they were analyzed morphologically and by the standardtechniques of plant anatomy. The stem is cylindrical, white or purple, with uniseriate epidermis, trichomes and endoderm with starch sheath and Casparian strips. The leaves are simple, opposite, with attenuate or arising basis; they have anomocytic stomata, epicuticular wax plates or granules, pearl glands, dorsiventral mesophyll with collateral vascular bundles and secretory ducts. Ayapana triplinervis showed different morphoanatomical features betweenthe white and purple types, which enablesthe distinction between the two morphotypes.
production of chemical compounds, mainly fixed and essential oils, which are of great industrial interest. The "pequiá" tree is a majestic tree from primary forest and represents huge economic potential. This work aimed to study the anatomical aspects, extraction and characterization of the fixed oil present in the fruit and the seed of Caryocar villosum. There were used fifty fruits of pequiá collected from the municipality of Tartarugalzinho (Amapá). The identification of species was made by comparison with exsiccates available in the Amapá Herbarium-HAMAB. For anatomical and phytochemical analyses, conventional methodology was used. The result in the macerate of the mesocarp corresponds to a yellow mass impregnated by lipids; in the endocarp there were registered trichomes which secret these lipids, forming an arc in all its extension. In the solvent-based phytochemical analyses of the mass of pericarp, mesocarp and fixed oil seed, favorable and satisfactory oil yields were obtained. The analyses of the acidity, saponification, ester and peroxide indexes are parameters that are related to the quality of the oil, therefore, the values obtained meet the Anvisa/2015 Resolution. It is thus concluded that the fixed oil obtained from the mesocarp/seed of C. villosum is indicated for alimentary purposes, with potential to reduce total cholesterol and LDL cholesterol, as well as in cosmetic industry. Therefore, anatomical analyses help phytochemical studies (CNPq/IEPA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.