In this paper, we address the problem of detecting an inhomogeneity in shallow water by observing changes in the acoustic field as the inhomogeneity passes between an acoustic source and vertical line array of receivers. A signal processing scheme is developed to detect the perturbed field in the presence of the much stronger primary source signal, and to estimate such parameters as the time when the inhomogeneity crosses the source-receiver path, its velocity, and its size. The effectiveness of incoherent, coherent, and partially coherent spatial processing of the array signals is evaluated using models and data obtained from experiments in a lake. The effect of different bottom types is also considered, and it is shown that partially coherent processing can have a significant advantage depending on the bottom type. Estimates of the minimum input signal-to-noise ratios (SNRs) for which the diffracted signal can be observed are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.