To examine the ecology and evolution of microbial chitinases, especially the chitin-binding domain, one of the chitinase genes (&A) from the marine bacterium Vibrio harveyi was analysed. The deduced amino acid sequence of ChiA is not very similar overall to other proteins, except for two regions, the putative catalytic and chitin-binding domains. Among all bacterial chitinases sequenced to date, there is no relationship between percentage similarity of catalytic domains and chitin-binding domains in pairwise comparisons, suggesting that these two domains have evolved separately. The chitinbinding domain appears to be evolutionarily conserved among many bacterial chitinases and is also somewhat similar to cellulose-binding domains found in microbial cellulases and xylanases. To investigate the role of the chitin-binding domain, clones producing versions of ChiA with or without this domain were examined. One version with the domain (ChiAl) bound to and hydrolysed chitin, whereas a truncated ChiA without the putative chitin-binding domain (ChiA2) did not bind to chitin, but it could hydrolyse chitin, although not as well. ChiAl diffused more slowly in agarose containing colloidal chitin than ChiA2, but diffusion of the two proteins in agarose without colloidal chitin was similar. These results indicate that the chitin-binding domain helps determine the movement of chitinase along IV-acetylglucosamine strands and within environments containing chitin.
Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on -chitin (isolated from squid pen) than on ␣-chitin (isolated from snow crab), probably because of the more open structure of -chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products.
Summary
Escherichia coli cells deficient in RecA protein frequently contain an abnormal number of chromosomes after completion of ongoing rounds of DNA replication. This suggests that RecA protein may be required for correct timing of initiation of DNA replication; however, we show here that initiation of DNA replication is properly timed in recA mutants. We also find that more than 10% of recA mutant cells contain no DNA. These anucleate cells appear to arise from partitioning of all the DNA into one daughter cell and no DNA into the other daughter cell. Based on these and previously published results, we propose that RecA protein is required for equal partitioning of chromosomes into the two daughter cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.