<p>The whole world is experiencing a novel infection called Coronavirus brought about by a Covid since 2019. The main concern about this disease is the absence of proficient authentic medicine The World Health Organization (WHO) proposed a few precautionary measures to manage the spread of illness and to lessen the defilement in this manner decreasing cases. In this paper, we analyzed the Coronavirus dataset accessible in Kaggle. The past contributions from a few researchers of comparative work covered a limited number of days. Our paper used the covid19 data till May 2021. The number of confirmed cases, recovered cases, and death cases are considered for analysis. The corona cases are analyzed in a daily, weekly manner to get insight into the dataset. After extensive analysis, we proposed machine learning regressors for covid 19 predictions. We applied linear regression, polynomial regression, Decision Tree Regressor, Random Forest Regressor. Decision Tree and Random Forest given an r-square value of 0.99. We also predicted future cases with these four algorithms. We can able to predict future cases better with the polynomial regression technique. This prediction can help to take preventive measures to control covid19 in near future. All the experiments are conducted with python language</p>
Android is the most widely used operating system in smartphones. Mobile users can download and access apps easily from the play store. Due to lack of security awareness and risk associated with mobile apps, malware apps would be downloaded by normal users in general. The consequences after installing a malware app are unpredictable. Malware apps can gather user personal data, browsing history, user profiles, user sensitive data like passwords. Hence, android malware detection is essential for providing security to mobile users. Android malware detection using machine learning is done either by extracting static features (opcodes, permissions, intents, system commands) or by extracting dynamic features (log behavior, system calls, dataflow). In this paper, opcode sequences are extracted from malware and benign apps, and Recurrent Neural Networks are proposed on extracted sequences. Benign apps are collected from the play store, apkpure.com and malware apps are collected from the virus share website. The proposed Recurrent Neural Network model could achieve 96% accuracy for android malware detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.