<p>The whole world is experiencing a novel infection called Coronavirus brought about by a Covid since 2019. The main concern about this disease is the absence of proficient authentic medicine The World Health Organization (WHO) proposed a few precautionary measures to manage the spread of illness and to lessen the defilement in this manner decreasing cases. In this paper, we analyzed the Coronavirus dataset accessible in Kaggle. The past contributions from a few researchers of comparative work covered a limited number of days. Our paper used the covid19 data till May 2021. The number of confirmed cases, recovered cases, and death cases are considered for analysis. The corona cases are analyzed in a daily, weekly manner to get insight into the dataset. After extensive analysis, we proposed machine learning regressors for covid 19 predictions. We applied linear regression, polynomial regression, Decision Tree Regressor, Random Forest Regressor. Decision Tree and Random Forest given an r-square value of 0.99. We also predicted future cases with these four algorithms. We can able to predict future cases better with the polynomial regression technique. This prediction can help to take preventive measures to control covid19 in near future. All the experiments are conducted with python language</p>
Social media plays a major role in several things in our life. Social media helps all of us to find some important news with low price. It also provides easy access in less time. But sometimes social media gives a chance for the fast-spreading of fake news. So there is a possibility that less quality news with false information is spread through the social media. This shows a negative impact on the number of people. Sometimes it may impact society also. So, detection of fake news has vast importance. Machine learning algorithms play a vital role in fake news detection; Especially NLP (Natural Language Processing) algorithms are very useful for detecting the fake news. In this paper, we employed machine learning classifiers SVM, K-Nearest Neighbors, Decision tree, Random forest. By using these classifiers we successfully build a model to detect fake news from the given dataset. Python language was used for experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.