A fully measurement based extraction procedure of distributed low-frequency nonlinear noise model of PHEMT is proposed. This model describes accurately the distributed nature under the device gate which allows a good noise behavior prediction in non linear circuits. It is used to simulate successfully noise characteristics of MMICs for FMCW automotive radar at 77 GHz. The simulated and experimental results on two different source-chips : a VCO and DRO have been compared and we demonstrate the accuracy of the noise model which results to be independent of the application.
In this paper, we describe a theoretical basis, leading to new results, on the general conditions to be fulfilled by oscillator circuits to achieve a very low phase noise. Three main conditions must be fulfilled by a transistor oscillator circuit to reach the minimum phase noise. The energy stored in the resonator must be maximum. Its transfer to the controlling voltage port of the transistor current source must be first maximized. A possible conversion noise at the transistor output port will be also minimized by maximizing the energy transferred to that port. The proposed method has been applied to an experimental oscillator set up with a PHEMT transistor. A state-of-the-art phase noise of -80 dBc/Hz at 100 Hz offset from carrier with a 1/f(3) slope has been measured at room temperature with a 9.2 GHz, oscillator. The application of these new results to free-running oscillator circuits with one-stage then multistage transistor amplifiers demonstrate clearly the validity of the design method. The efficiency of this design method and its ease of use represent a real breakthrough in the field of low noise transistor oscillator circuit design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.