Abstract:A heterogeneously integrated III-V-on-silicon laser is reported, integrating a III-V gain section, a silicon ring resonator for wavelength selection and two silicon Bragg grating reflectors as back and front mirrors. Single wavelength operation with a side mode suppression ratio higher than 45 dB is obtained. An output power up to 10 mW at 20 ⁰C and a thermooptic wavelength tuning range of 8 nm are achieved. The laser linewidth is found to be 1.7 MHz.
Abstract-This paper summarizes recent advances of integrated hybrid InP/SOI lasers and transmitters based on wafer bonding. At first the integration process of III-V materials on silicon is described. Then the paper reports on the results of single wavelength distributed Bragg reflector lasers with Bragg gratings etched on silicon waveguides. We then demonstrate that, thanks to the high-quality silicon bend waveguides, hybrid III-V/Si lasers with two integrated intra-cavity ring resonators can achieve a wide thermal tuning range, exceeding the C band, with a side mode suppression ratio higher than 40 dB. Moreover, a compact array waveguide grating on silicon is integrated with a hybrid III-V/Si gain section, creating a wavelength-selectable laser source with 5 wavelength channels spaced by 400 GHz. We further demonstrate an integrated transmitter with combined silicon modulators and tunable hybrid III-V/Si lasers. The integrated transmitter exhibits 9 nm wavelength tunability by heating an intra-cavity ring resonator, high extinction ratio from 6 to 10 dB, and excellent bit-error-rate performance at 10 Gb/s. Index Terms-Hybrid photonic integrated circuits, silicon laser, semiconductor lasers, silicon-on-insulator (SOI) technology, adiabatic taper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.