In recent years concerns have been growing in the scientific community over the definition of scientific responsibilities during emergencies, and the legal status of scientists involved in the corresponding decision-making. It is clear that the legal framework is one of the main elements affecting this issue; however, many factors may affect both the specific scientific decision-making and the definition of general scientific responsibilities. The situation will vary depending on the type and scale of emergency, and from place to place, even in the same country. There will be no such thing as a single, ideal solution. In the latest El Hierro volcanic crisis many factors have negatively affected the scientific management and have prevented an adequate definition of scientific responsibility. These factors have been detected and documented by the authors. They include excessive pressure due to human and economic issues, a poor legal framework with identifiable deficiencies, an Emergency Plan in which the Volcanic Activity/Alert Level (VAL), Emergency Response Level (ERL) and Volcanic Traffic Light (VTL) have been too rigidly linked, serious weaknesses in the management and structure of the Scientific Committee (SC), and more. Even though some of these problems have now been detected and certain solutions have already been proposed, the slowness and complexity of the bureaucratic processes are making it difficult to implement solutions.
Abstract. Volcanic eruptions are among the most awesome and powerful displays of nature's force, constituting a major natural hazard for society (a single eruption can claim thousands of lives in an instant). Consequently, assessment and management of volcanic risk have become critically important goals of modern volcanology. Over recent years, numerous tools have been developed to evaluate volcanic risk and support volcanic crisis management: probabilistic analysis of future eruptions, hazard and risk maps, event trees, etc. However, there has been little improvement in the tools that may help Civil Defense officials to prepare Emergency Plans. Here we present a new tool for simulating massive evacuation processes during volcanic crisis: the Variable Scale Evacuation Model (VSEM). The main objective of the VSEM software is to optimize the evacuation process of Emergency Plans during volcanic crisis. For this, the VSEM allows the simulation of an evacuation considering different strategies depending on diverse impact scenarios. VSEM is able to calculate the required time for the complete evacuation taking into account diverse evacuation scenarios (number and type of population, infrastructure, road network, etc.) and to detect high-risk or "blackspots" of the road network. The program is versatile and can work at different scales, thus being capable of simulating the evacuation of small villages as well as huge cities.
Traditionally volcanic-hazard assessments have been applied to stratovolcanoes, where volcanic hazard maps represent important tools for volcanic crisis management and land-use planning. In recent years, several improvements have been made for monogenetic volcanic fields focused on, among other things, the development of spatial models to deal with one of the main problems in these areas, namely the unknown vent location. However, volcanic hazard maps of monogenetic volcanic fields present some significant differences with respect to those developed for stratovolcanoes, including the fact that they commonly represent multiple eruptive processes spread over the possible vent opening area. Likewise, the scientific communication of the volcanic-hazard assessment and how this information is comprehended are critical issues in the development of mitigation strategies for monogenetic volcanic fields. In this research, we focused on developing volcanic hazard maps using simple numerical hazard models in combination with a random approach for vent location to cover the whole vent opening area. We added some spatial methods to better manage potentially affected areas. The maps were designed for use in a digital environment (Geographic Information System) by Civil Protection professionals in high-risk monogenetic volcanic fields on small oceanic islands. The methodology presented does not use susceptibility base maps for hazard assessment to avoid possible underestimation of low probability areas by Civil Protection. The methodology represents an attempt to respond to the most important questions of where, when and how a new eruption might take place in a monogenetic volcanic field. The example presented here was developed for La Palma (Canary Islands).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.