Objective. To examine the role of chemokines, S100A8, and S100A9 in neutrophil accumulation induced by the causative agent of gout, monosodium urate monohydrate (MSU) crystals.Methods. MSU crystal-induced neutrophil migration was studied in the murine air-pouch model. Release of chemokines, S100A8, S100A9, and S100A8/A9 in response to MSU crystals was quantified by enzymelinked immunosorbent assays. Recruited cells were counted following acetic blue staining, and the subpopulations were characterized by Wright-Giemsa staining of cytospins.Results. MSU crystals induced the accumulation of neutrophils following injection in the air pouch, which correlated with the release of the chemokines CXCL1, CXCL2, CCL2, and CCL3. However, none of these was found to play an important role in neutrophil migration induced by MSU crystals by passive immunization with antibodies directed against each chemokine. S100A8, S100A9, and S100A8/A9 were also found at high levels in the pouch exudates following injection of MSU crystals. In addition, injection of S100A8, S100A9, or S100A8/A9 led to the accumulation of neutrophils in the murine air pouch, demonstrating their proinflammatory activities in vivo. Passive immunization with anti-S100A8 and anti-S100A9 led to a total inhibition of the accumulation of neutrophils. Finally, S100A8/A9 was found at high concentrations in the synovial fluid of patients with gout.Conclusion. S100A8 and S100A8/A9 are essential to neutrophil migration induced by MSU crystals. These results suggest that they might be involved in the pathogenesis of gout.
Riboswitches are mRNA regulatory elements that control gene expression by altering their structure in response to specific metabolite binding. In bacteria, riboswitches consist of an aptamer that performs ligand recognition and an expression platform that regulates either transcription termination or translation initiation. Here, we describe a dual-acting riboswitch from Escherichia coli that, in addition to modulating translation initiation, also is directly involved in the control of initial mRNA decay. Upon lysine binding, the lysC riboswitch adopts a conformation that not only inhibits translation initiation but also exposes RNase E cleavage sites located in the riboswitch expression platform. However, in the absence of lysine, the riboswitch folds into an alternative conformation that simultaneously allows translation initiation and sequesters RNase E cleavage sites. Both regulatory activities can be individually inhibited, indicating that translation initiation and mRNA decay can be modulated independently using the same conformational switch. Because RNase E cleavage sites are located in the riboswitch sequence, this riboswitch provides a unique means for the riboswitch to modulate RNase E cleavage activity directly as a function of lysine. This dual inhibition is in contrast to other riboswitches, such as the thiamin pyrophosphate-sensing thiM riboswitch, which triggers mRNA decay only as a consequence of translation inhibition. The riboswitch control of RNase E cleavage activity is an example of a mechanism by which metabolite sensing is used to regulate gene expression of single genes or even large polycistronic mRNAs as a function of environmental changes.gene regulation | RNA degradosome | translational control S ince the first demonstration that translation attenuation regulates the expression of the tryptophan operon (1), accumulating evidence has revealed the importance of posttranscriptional regulation in prokaryotes and eukaryotes alike. Posttranscriptional regulators include RNA molecules that operate through several mechanisms to control a wide range of physiological responses (2). Among newly identified RNA regulators are riboswitches, which are located in untranslated regions of several mRNAs and that modulate gene expression at the level of transcription, translation, or splicing (3). Riboswitches are highly structured regulatory domains that directly sense cellular metabolites such as amino acids, carbohydrates, coenzymes, and nucleobases. These genetic switches are composed of two modular domains consisting of an aptamer and an expression platform. The aptamer is involved in the specific recognition of the metabolite, and the expression platform is used to control gene expression by altering the structure of the mRNA. Recent bioinformatic analyses have reported the existence of several new RNA motifs exhibiting unconventional expression platforms (4, 5), suggesting that riboswitches using different regulation mechanisms are still likely to be discovered (6).The lysine riboswitch was first...
To determine the safety and efficacy of viscosupplementation with hylan G-F 20, a cross-linked hyaluronan preparation, used either alone or in combination with continuous non-steroidal anti-inflammatory drug (NSAID) therapy, a randomized, controlled, multicenter clinical trial, assessed by a blinded assessor, was conducted in 102 patients with osteoarthritis (OA) of the knee. All patients were on continuous NSAID therapy for at least 30 days prior to entering the study. Patients were randomized into three parallel groups: (1) NSAID continuation plus three control arthrocenteses at weekly intervals; (2) NSAID discontinuation but with three weekly intra-articular injections of hylan G-F 20; and (3) NSAID continuation plus three injections, one every week, intra-articular injections of hylan G-F 20. Outcome measures of pain and joint function were evaluated by both the patients and an evaluator at baseline and weeks 1, 2, 3, 7 and 12, with a follow-up telephone evaluation at 26 weeks. At 12 weeks all groups showed statistically significant improvements from baseline, but did not differ from each other. A statistical test for the equivalence, the q-statistic, demonstrated that viscosupplementation with hylan G-F 20 was at least as good or better than continuous NSAID therapy for all outcome measurements except activity restriction. At 26 weeks both groups receiving hylan G-F 20 were significantly better than the group receiving NSAIDs alone. A transient local reaction was observed in three patients after hylan G-F 20 injection; only one patient withdrew from the study as a result and all recovered without any sequela. Hylan G-F 20 is a safe and effective treatment for OA of the knee and can be used either as a replacement for or an adjunct to NSAID therapy.
Riboswitches are regulatory elements that control gene expression by altering RNA structure upon the binding of specific metabolites. Although Bacillus subtilis riboswitches have been shown to control premature transcription termination, less is known about regulatory mechanisms employed by Escherichia coli riboswitches, which are predicted to regulate mostly at the level of translation initiation. Here, we present experimental evidence suggesting that the majority of known E. coli riboswitches control transcription termination by using the Rho transcription factor. In the case of the thiamin pyrophosphate-dependent thiM riboswitch, we find that Rho-dependent transcription termination is triggered as a consequence of translation repression. Using in vitro and in vivo assays, we show that the Rho-mediated regulation relies on RNA target elements located at the beginning of thiM coding region. Gene reporter assays indicate that relocating Rho target elements to a different gene induces transcription termination, demonstrating that such elements are modular domains controlling Rho. Our work provides strong evidence that translationally regulating riboswitches also regulate mRNA levels through an indirect control mechanism ensuring tight control of gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.