Riboswitches are mRNA regulatory elements that control gene expression by altering their structure in response to specific metabolite binding. In bacteria, riboswitches consist of an aptamer that performs ligand recognition and an expression platform that regulates either transcription termination or translation initiation. Here, we describe a dual-acting riboswitch from Escherichia coli that, in addition to modulating translation initiation, also is directly involved in the control of initial mRNA decay. Upon lysine binding, the lysC riboswitch adopts a conformation that not only inhibits translation initiation but also exposes RNase E cleavage sites located in the riboswitch expression platform. However, in the absence of lysine, the riboswitch folds into an alternative conformation that simultaneously allows translation initiation and sequesters RNase E cleavage sites. Both regulatory activities can be individually inhibited, indicating that translation initiation and mRNA decay can be modulated independently using the same conformational switch. Because RNase E cleavage sites are located in the riboswitch sequence, this riboswitch provides a unique means for the riboswitch to modulate RNase E cleavage activity directly as a function of lysine. This dual inhibition is in contrast to other riboswitches, such as the thiamin pyrophosphate-sensing thiM riboswitch, which triggers mRNA decay only as a consequence of translation inhibition. The riboswitch control of RNase E cleavage activity is an example of a mechanism by which metabolite sensing is used to regulate gene expression of single genes or even large polycistronic mRNAs as a function of environmental changes.gene regulation | RNA degradosome | translational control S ince the first demonstration that translation attenuation regulates the expression of the tryptophan operon (1), accumulating evidence has revealed the importance of posttranscriptional regulation in prokaryotes and eukaryotes alike. Posttranscriptional regulators include RNA molecules that operate through several mechanisms to control a wide range of physiological responses (2). Among newly identified RNA regulators are riboswitches, which are located in untranslated regions of several mRNAs and that modulate gene expression at the level of transcription, translation, or splicing (3). Riboswitches are highly structured regulatory domains that directly sense cellular metabolites such as amino acids, carbohydrates, coenzymes, and nucleobases. These genetic switches are composed of two modular domains consisting of an aptamer and an expression platform. The aptamer is involved in the specific recognition of the metabolite, and the expression platform is used to control gene expression by altering the structure of the mRNA. Recent bioinformatic analyses have reported the existence of several new RNA motifs exhibiting unconventional expression platforms (4, 5), suggesting that riboswitches using different regulation mechanisms are still likely to be discovered (6).The lysine riboswitch was first...
The RNA chaperone Hfq is a key regulator of the function of small RNAs (sRNAs). Hfq has been shown to facilitate sRNAs binding to target mRNAs and to directly regulate translation through the action of sRNAs. Here, we present evidence that Hfq acts as the repressor of cirA mRNA translation in the absence of sRNA. Hfq binding to cirA prevents translation initiation, which correlates with cirA mRNA instability. In contrast, RyhB pairing to cirA mRNA promotes changes in RNA structure that displace Hfq, thereby allowing efficient translation as well as mRNA stabilization. Because CirA is a receptor for the antibiotic colicin Ia, in addition to acting as an Fur (Ferric Uptake Regulator)-regulated siderophore transporter, translational activation of cirA mRNA by RyhB promotes colicin sensitivity under conditions of iron starvation. Altogether, these results indicate that Fur and RyhB modulate an unexpected feed-forward loop mechanism related to iron physiology and colicin sensitivity.
Bacteria express large numbers of non-coding, regulatory RNAs known as ‘small RNAs’ (sRNAs). sRNAs typically regulate expression of multiple target messenger RNAs (mRNAs) through base-pairing interactions. sRNA:mRNA base-pairing often results in altered mRNA stability and/or altered translation initiation. Computational identification of sRNA targets is challenging due to the requirement for only short regions of base-pairing that can accommodate mismatches. Experimental approaches have been applied to identify sRNA targets on a genomic scale, but these focus only on those targets regulated at the level of mRNA stability. Here, we utilize ribosome profiling (Ribo-seq) to experimentally identify regulatory targets of the Escherichia coli sRNA RyhB. We not only validate a majority of known RyhB targets using the Ribo-seq approach, but also discover many novel ones. We further confirm regulation of a selection of known and novel targets using targeted reporter assays. By mutating nucleotides in the mRNA of a newly discovered target, we demonstrate direct regulation of this target by RyhB. Moreover, we show that Ribo-seq distinguishes between mRNAs regulated at the level of RNA stability and those regulated at the level of translation. Thus, Ribo-seq represents a powerful approach for genome-scale identification of sRNA targets.
Many RNA-RNA interactions depend on molecular chaperones to form and remain stable in living cells. A prime example is the RNA chaperone Hfq, which is a critical effector involved in regulatory interactions between small RNAs (sRNAs) and cognate target mRNAs in Enterobacteriaceae. While there is a great deal of in vitro biochemical evidence supporting the model that Hfq enhances rates or affinities of sRNA:mRNA interactions, there is little corroborating in vivo evidence. Here we used in vivo tools including reporter genes, co-purification assays, and super-resolution microscopy to analyze the role of Hfq in RyhB-mediated regulation, and we found that Hfq is often unnecessary for efficient RyhB:mRNA complex formation in vivo. Remarkably, our data suggest that a primary function of Hfq is to promote RyhB-induced cleavage of mRNA targets by RNase E. Moreover, our work indicates that Hfq plays a more limited role in dictating regulatory outcomes following sRNAs RybB and DsrA complex formation with specific target mRNAs. Our investigation helps evaluate the roles played by Hfq in some RNA-mediated regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.