We use a multi-high-frequency resonant cavity technique to obtain EPR spectra for single crystal samples of the biaxial molecular magnet Fe 8 [(tacn) 6 O 2 (OH) 12 ]Br 8 ·9H 2 O (Fe 8 ). By performing measurements at many closely spaced frequencies, we are able to extrapolate data back to zero magnetic field and, thereby, obtain accurate estimates of the zero-field splittings. Furthermore, from the (low-) field dependence of these splittings, with the magnetic field parallel to the easy axis, we can directly measure the g z -value. Measurements performed with the magnetic field parallel to the intermediate and hard axes may be used to constrain further the Hamiltonian parameters. Our results are in broad agreement with recent inelastic neutron scattering data. In addition, analysis of individual resonances (which we can assign to known transitions) reveals a pronounced M S dependence of the resonance line widths. Furthermore, the line positions exhibit complex (again M S dependent) temperature dependences that cannot be reconciled with the standard spin Hamiltonian.
Diluted magnetic semiconductors (DMS) are among the most intensely investigated materials in recent times in view of their great application potential. Yet, they are also the most controversial because of the possibility of extrinsic effects attributable to dopant solubility and clustering, point defects, incorporation of unintentional impurities, etc. This has highlighted the central role of materials chemistry in rendering a specific microstate and property response. In this work, we provide a combined window of high-resolution scanning transmission electron microscopy and electron energy-loss spectrometry, X-ray absorption (XAS)/X-ray magnetic circular dichroism (XMCD), and magnetization measurements on epitaxial rutile Co
x
Ti1−x
O2 (x = 0–0.06) system (the first discovered oxide-DMS, which continues to be controversial) grown at low temperature (400 °C) under different ambient atmospheres. The study brings out a mixed-state scenario of ferromagnetism involving intrinsic DMS (uniform dopant distribution at low dopant concentration) and coupled cluster magnetism, involving cobalt associations within the matrix at higher concentrations. We also show that by matrix valence control during growth, it is possible to realize a uniform embedded cluster state and the related coupled cluster magnetism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.