Abstract.A lot of work has been done in the area of data stream processing. Most of the previous approaches regard only relational or XML based streams but do not cover semantically richer RDF based stream elements. In our work, we extend SPARQL, the W3C recommendation for an RDF query language, to process RDF data streams. To describe the semantics of our enhancement, we extended the logical SPARQL algebra for stream processing on the foundation of a temporal relational algebra based on multi-sets and provide an algorithm to transform SPARQL queries to the new extended algebra. For each logical algebra operator, we define executable physical counterparts. To show the feasibility of our approach, we implemented it within our O Ý×× Ù× framework in the context of wind power plant monitoring.
ABSTRACT'Safe voyage from berth to berth' -this is the goal of all e-navigation strains, driven by new technologies, new infrastructures and new organizational structures on bridge, on shore as well as in the cloud. To facilitate these efforts suitable engineering and safety/risk assessment methods have to be applied. Understanding maritime transportation as a sociotechnical system allows system engineering methods to be applied. Formal and simulation based verification and validation of e-navigation technologies are important methods to obtain system safety and reliability. The modelling and simulation toolset HAGGIS provides methods for system specification and formal risk analysis. It provides a modelling framework for processes, fault trees and generic hazard specification and a physical world and maritime traffic simulation system. HAGGIS is accompanied by the physical test bed LABSKAUS which implements a reference port and waterway. Additionally, it contains an experimental Vessel Traffic Services (VTS) implementation and a mobile integrated bridge enabling in situ experiments for technology evaluation, testing, ground research and demonstration. This paper describes an integrated seamless approach for developing new e-navigation technologies starting with virtual simulation based assessment and ending in physical real world demonstrations.
One of the main challenges in the development of traffic systems is to assure safety for all road users. Hence, especially expensive vehicles are equipped with advanced driver assistance systems (ADAS) that use data about the vehicle and information about objects in the proximity of the vehicle to execute the assistance function. These objects have to be detected by sensors and they have to be tracked over multiple scans to keep the object's state up-to-date. Usually, such ADAS are developed as proprietary systems that are tailored for the specific assistance function and the specific sensors in use. Indeed, that leads to a very efficient system. However, changing system properties, e. g. an exchange of sensors, is very expensive. In this case, very often at least some parts of the system code have to be reimplemented. To solve this problem of bad maintainability which arises especially during the development of new assistance functions in this work a new architecture for ADAS is presented. The relevant information for the assistance function is no longer provided by hard coded, predefined processes, but by flexible continuous operator plans in a datastream management system. These operator plans build up a dynamic context model of the vehicle's environment. The context model is kept up-to-date by object tracking operators in these operator plans and is then used as a data source to extract information for different assistance functions. This extraction is also done by operator plans that produce only relevant information and discard other information.
Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free-running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS), are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM), is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD) are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.